Dynamic Effects in LHC Magnets

LHC-MTA, LHC-MMS, SL-PO Presented by L. Bottura

Prepared for the VLHC Annual Meeting Port Jefferson, NY, October 16-18, 2000

Overview

• What are dynamic effects ?

- Why are they important ?
- What do we know about them ?
 - physics
 - phenomenology
- How will we deal with them at LHC ?
- Summary and ideas for the VLHC

What are dynamic effects ?

Static Field Quality in LHC Magnets

Ramp Rate Dependent Effects

strands coupling currents

eddy (coupling) currents in cables

- eddy currents in metallic components
 - beam screen

wedges

...

Cable Coupling Currents - 1

Systematic effects expected on allowed multipoles

B1, b3, b5, ... in MB
B2, b6, b10, ... in MQ

for the R_c value in MTP1N2 see: R. Wolf, et al., IEEE Trans. Appl. Sup., 7 (2), 797, 1997 Normal sextupole during ramps

Cable Coupling Currents - 2

Random, nonnegligible effects expected on nonallowed multipoles

e.g. b2, a2 in MB

for the ΔR_c value in MTP1N2 see:

R. Wolf, et al., IEEE Trans. Appl. Sup., 7 (2), 797, 1997

Expected Ramp Rate Effects

Decay and Snap-back at Injection - 1

subsequent energy ramp

Decay and Snap-back at Injection - 2

Decay and Snap-back at Injection - 3

Expected Decay and Snap-back

Why are they important ?

Effect of an uncorrected ramp

- During <u>uncorrected</u> ramps (Rc=15 $\mu\Omega$, 10 A/s)
 - $Δ_{b1(MB)} = 5.4 → ΔQ = 0.054 \text{ vs. } 0.003$
 - $∆_{b2(MQ)} = 17 → ∆Q = 54 ∆_{b2}10^{-4} = 0.09$ vs. 0.003
 - $\Delta_{b3(MB)} = 1.0 \rightarrow \Delta \xi = 52 \Delta_{b3} = 52 \text{ vs. 1}$

(source: O. Bruening, SL-AP)

Effect of an uncorrected snap-back

During <u>uncorrected</u> snap-back

- $Δ_{b1(MB)} = 2.6 → ΔQ = 0.026 vs. 0.003$
- Δ_{b2(MQ)} = 1.7 → Δ Q = 54 Δ _{b2}10⁻⁴ = 0.009 vs. 0.003
- $\Delta_{b3(MB)} = 3.3 \rightarrow \Delta \xi = 52 \Delta_{b3} = 172 \text{ vs. 1}$

(source: O. Bruening, SL-AP)

What do we know about them ?

Physics of Coupling Currents

Physical model for strand/cable coupling available

A. Devred, T.Ogitsu, CERN 96-03, 1996

- Can be *controlled* at the strand/cable production level:
 - LHC target interstrand resistance $R_c > 20 \ \mu\Omega \pm 5 \ \mu\Omega$
 - obtained through controlled coating and accelerated oxidation
 - $Reproducible \rightarrow$ measured on 100 % of magnets

Basic understanding of physics principle available:

- flux-creep (accounts for 10 % ... 30 % of effect)
- Interaction between cable transport current redistribution and filaments magnetization
- L. Bottura, et al., Field Errors Decay and "Snap-Back" in LHC Model Dipoles, IEEE Trans. Appl Sup., 7(2), 602, 1997
- R. Wolf, *The Decay of the Field Integral in SC Accelerator Magnets Wound with Rutherford Cables*, Proc. of 15th Mag. Techn. Conf., Beijing, Oct. 20-24, 1997
- Cannot be *controlled* at production
- Not reproducible \rightarrow measured on 110 % of magnets

The magnetization state is reestablished as soon as the background field is increased ⇒ snap-back

- The background field change necessary is of the same order of the internal field change in the cable
 - \approx 100 A change in current imbalance
 - ≈ 10 mT average internal field change (vs. 5...20 mT measured)

Measurements of Decay and SB - 1

Parameters affecting decay and SB

. . .

Pre Injection Duration & Current

► †

Snapback ?

and (many) others: Number of pre-cycles Quench Ramping speed

Measurements of Decay and SB - 2

100 80 60 40 20 30 min pre-injection 15 min miection 1 minute flattop 4 KA Rattop duench nominal operation variant

Measured on a *small series* (≈10) of 1-m LHC model dipoles

Large spread (1 order of magnitude) depending on the powering history and conditions

decay (%)

Measurements of Decay and SB - 3

Space of parameters:

- pre-injection duration
- injection duration
- flat-top current
- flat-top time
- magnet temperature
- ramp-rates
- too large for series measurements

Modelling of Decay and SB

How will we deal with them ?

Control of Dynamic Effects

Optimized ramp to minimize effects

- Cycling policy to guarantee reproducibility
- Feed-forward from the LHC magnetic reference
- Feed-forward from previous operating cycles
- Feed-back from on-line (BI) measurements

Optimized Ramp

The LHC Magnetic Reference

Courtesy of Q. King

Inside the Multipoles Factory

Reference Magnets Control Interface

Courtesy of Q. King

Summary and ideas for a VLHC

WGs, Workshops, Seminars !

Working and study groups

- Dynamic Effects Working Group (active 3 yrs, now dormant)
- Interdivisional LHC Controls Project (active since early 2000)
- Machine Commissioning Committee (planned)

International Workshops and seminars

- Seminars on Dynamic Effects in Super-Conducting Magnets and their Impact on Machine Operation, October 6th, 1995.
- *LHC Workshop on Dynamic Effects and their Control*, February 5th to 7th, 1997.
- *LHC Controls-Operation Forum*, December 1st-2nd, 1999.

vital to understanding, involvement and planning

Open Issues

Reproducibility cycle-to-cycle ?

Spread among octants ?

- 5 cable and 3 magnet manufacturers
- Accuracy of predictive scalings ?
 - assume 80 % for the moment, 20 % residual error
- A *deterministic* model of decay and snap-back seems to be out of reach...

Perspective for LHC

- Treasured TeV and HERA experience
- Physics principle of decay and SB assessed, a working empirical scaling available
- 100 % cold measurements
- Involvement of machine control and operation teams for early integration
- Sector test (early 2004) can verify conceptual design of machine control

5 years to go before the first p is injected !

Ideas for VLHC - 1

A slow ramp out of injection can help...

Ideas for VLHC - 2

A snapback-free injection and acceleration start

continuous B1 ramp, injection on-the-fly

 $\Delta B1 \approx 15 \text{ mT}$

