

Errest Orlande Lawrence Berzeley Natioral Laboratory

Vacuum System and Synchrotron Radiation in the Very Large Hadron Collider - VLHC

Mauro Pivi

VLHC annual meeting

Port Jefferson, NY 16-18 October 2000

Errept Orlando Lawrence Berkeley Natioral Laboratory

VLHC Annual Meeting Port Jefferson - NY October 2000

managed by Brookhaven Science Associates for the U.S. Department of Energy

Vacuum System and Synchrotron Radiation in the VLHC

Mauro Pivi

16-18 October 2000

Table of contents

- Desorption mechanisms in particle accelerators, and vacuum stability
 - electron-cloud
 - ion-induced desorption
- Vacuum system requirements for VLHC, HF and LF
- Electron-cloud in the VLHC
- Conclusions

VLHC parameters	symbol	LF	HF
energy at collision dipole field at 50 TeV circumference number of particles per bunch total beam current	E, TeV B, T C, km N _b I, mA	5 1.8 646 0.94 X 10 ¹⁰ 90	0 12.6 104 0.5 X 10 ¹⁰ 48
beta function normalized emittance	β, m	25 prad	55
normalized emittance	c_n, π mm-m		L
vacuum chamber dimensions beam tube temperature pp collision IP lifetime	r_w, cm $T_w, {}^oK$ $ au_{pp}, hrs$	0.75 x 1.5 ~294 130	1.65 ~15-20 32

Synchrotron Radiation related parameters

Parameter	symbol	LF	HF
photon flux	Г', ph/m-sec	0.34 X 10 ¹⁶	1.26 X 10 ¹⁶
critical energy power deposited per meter total power energy loss per turn	Ec, keV P/2πρ, W/m P, kW ΔE, MeV/turn	0.48 0.082 47.5 0.53	3.4 2.12 176.6 3.7
radiation damping time	τ_D , hrs	114	2.6

Three main desorption mechanisms (besides thermal desorption):

- photon stimulated desorption (PSD)
- electron (cloud) stimulated desorption (ESD)
- ion-induced desorption

Desorption mechanisms in particle accelerators (1/3):

Photon stimulated desorption (PSD) has been attributed to a two-step process [Fisher, Mack, Bernardini, Malter]:

1) photons produce photoelectrons and secondary electrons

2) secondary electrons excite strongly-bound molecules, which may desorb spontaneously

Electron Stimulated Desorption (ESD)

Ion Induced Desorption (ESD)

Model equations for vacuum stability in a cryosorbing beam tube exposed to Synchrotron Radiation, I on and e- bombardment

equation for volume density

(1)
$$V \frac{\partial n}{\partial t} = (\eta_1 + \eta') \dot{\Gamma} + (\eta_{e1} + \eta'_e) [\dot{\Gamma}Y' + \frac{I\sigma_{pi}}{e} nY_i] \xi(I) + (\eta_{i1} + \eta'_i) \frac{I\sigma_{pi}}{e} n + \frac{A_w s}{\tau_w^t} - \sigma_w S_w n - Sn + A_c D \frac{\partial^2 n}{\partial s^2}$$
 equation for surface density
(2) $A_w \frac{\partial s}{\partial t} = \eta_2 \dot{\Gamma} + \sigma_w S_w n - \frac{A_w s}{\tau_w^t} - \eta' \dot{\Gamma} - \eta_i^* \frac{I\sigma_{pi}}{e} n - \eta'_e \dot{\Gamma}_{el}$

where V is the chamber volume, n is the molecular density, η_1 the desorption coefficient for tightly bound molecules (the suffix "i" and "e" are for ion and electron), η_2 , prod. phisis. molec per photon, η ' the desorption coefficient for phisisorbed molecules, Γ the photon flux, ξ the contribution given by the electron cloud, Y' the photoelectric yield, Y_i the yield for electron production from ion impact on the surface, σ_{pi} the cross section for ion production, A_w the desorbed area, s thesurface density (monolayer), τ_w the sojourn time, σ_w the sticking coefficient, S_w the ideal wall pumping speed (v $A_w/4$), A_c the cross section chamber area, D the Knudseen diffusion coefficient, η_2 prod. phisis. molec per photon.

I on induced desorption instability

Ion desorption term in equation (1) is linearly dependent with the molecular density *n*, and since the process is regenerative this may lead to the so called ion-induced desorption instability (ion pressure bump instability).

ex. solving eq. (1) for a *long* 4.2 °K beam tube without a liner:

or with a liner:

• Up to now, the ISR (CERN) has been the <u>only</u> machine where the ion-induced pressure instability has been observed

 $(\eta_{i1}=3, S=42 \ l/m-s)$

Beam-residual gas interaction

VLHC Vacuum System Requirements

Luminosity loss rate due to beam-gas scattering

gas	σ_{pj} (Mb)	$\overline{P}_{oj}(n)$	Forr) $[\tau_g = 5\tau_L]$	P_j (nTorr) [0.1 W/m]			
		LF	HF	LF	HF		
H2	0.12	2.8	14.6	56.1	105		
CH4	0.65	0.43	2.7	10.3	19.4	ر امcal pressure	
H2O	0.69	0.36	2.5	9.7	18.3	bump limits	
CO	1.0	0.25	1.8	6.7	12.6		
CO2	1.6	0.15	1.1	4.2	7.9		

Required Pumping Speed for VLHC

M. Pivi

Pumping Options for VLHC

NEG pump or Cryopumping ?

Hydrogen vapour pressure

O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

LHC liner (beam screen) in a Cryo-magnet cold bore

actual LHC beam screen cross section

Lawrence Berkeley National Laboratory

LEP vacuum chamber with NEG pumping system

Non Evaporable Getter (NEG), St 101

CompositionZr 84% Al 16%Getter layer thickness100 μmActivation temperature750 °C

 CH_4 and inert gasses are <u>not</u> pumped by NEG, need to combine with ion pumps

Lawrence Berkeley National Laboratory

An alternative option ...

Non evaporable getter-coating in a SC magnet cold bore

- eliminates holes and cooling capillaries
- no He leak risk in the beam pipe
- low Secondary Electron Yield (very good to get rid of eventual electron-cloud)
- thermal excursions inside the chamber
- unknown technology (& costs)

... something to think about for the future

Adv:

Pumping system Solutions for VLHC

Low Field

distributed NEGs + ion pumps (~20m) for CH_4

Neg strip 3cm wide antechamber size 5x7cm coupling pumping slots 7mm LEP NEG St101 (500 *l/m-s*), St 707 or TiZrV (?!) to get the required pumping speed *S*=270 *l/m-s*

> NEGs are compatible with the warm LF configuration of the VLHC

High Field

Liner (beam screen) LHC type

area holes 22.6 cm^2/m to get the estimated pumping speed $S=42 l/m-s \longrightarrow 2.2\%$ surface covered with pumping slots

Cryopump system is compatible with the superconducting HF configuration of the VLHC

Lawrence Berkeley National Laboratory

Schematic of electron-cloud build up in the LHC beam pipe

	M odel calculation	Modelcalculations of electron cloud parameters						
	21-Sep-00							
	Param eter	PEPILER	LH C	SSC	RHIC	VLHC-HF	VLHC-LF	
	E,GeV	3 .1	7.00E+03	2.00E+04	1.00E + 02	5.00E + 04	5.00E+04	
	γ	6.07E+03	7.46E+03	2.13E + 04	1.07E + 02	5.33E + 04	5.33E+04	
	C, km	2.2	26.66	87.12	3 .8 3	104.00	646.00	
	ρ, ^m	13.75	2.78E+03	1.02E+04	238	13214.28571	9.25E+04	
	n _b	5.90E+10	1.05E+11	7.50E+09	7.90E+10	5.00E+09	9.40E+09	
	N _B	1658	2835	17333	6 0	20690	128594	
	σz, cm	1	7.7	7	10	1.42	1.42	
	t _{bb} , nsec	4.2	24.95	16.67	228.4	16.67	16.67	
	I, A	2.13E+00	5.36E-01	7.16E-02	5.94E-02	4.77E-02	8.98E-02	
	I _{BT} , A	2.247619048	6.73E-01	7.20E-02	5.53E-02	4.80E-02	9.02E-02	(r
	I _{BT, RES} , A	6.71	9.85E-02	1.74E-01	4.45E-03	1.85E-01	6.81E-02	⊳ ∝ [<u>'pip</u>
	b,cm	2.5	1.8	1.6	3.5	1.65	1	
	photons/m -sec	2.56E+16	7.79E+16	7.28E+15	-	1.02E + 16	3.08E+15	
	E _c , eV	4.82E+03	4.43E+01	2.81E + 02	1.53E-03	3.40E+03	4.85E+02	
-	$< E > _{V'} eV$	1.48E+01	1.36E+01	8.65E+01	-	1.05E+03	1.49E+02	
R. power	→ P' _{v,bt} W /m	6.08E-02	1.70E-01	1.01E -01	-	1.70E+00	7.36E-02	
	g	2.16E+00	5.22E-01	1.77E+00	1.20E + 00	2.80E+00	1.99E+00	
	$<\Delta E >$, eV	1.95E+02	2.88E+02	6.31E+00	9.89E+01	4.17E+00	2.84E+01	
	Δ^{E} (b), eV	4.51E+01	2.76E+02	1.78E+00	4.13E+01	7.44E-01	7.16E+00	
1	► t _{bb/} t _{tr}	3.36E-01	6.85E+00	4.14E-01	1.25E+01	2.59E-01	1.33E+00	- import
	f _{EB} (2t _{BB})	5.78E-01	2.61E+00	6.42E-01	3.52E+00	5.08E-01	1.15E + 00	ппрог
	M atl	Al(TiN)	Cu(cond.)	Сu	S S	Cu	Al(warm)	
	α	1	0.66	1	0.1 ?	1	0.9 ?	
	κ	0	0	0	0	0	0	
	δν	0.2	0.2	0.2	0.2	0.2	0.2	
	δse	1.1	1.1	2.1	2.7	2 .1	3.5	
	kT _{se} (eV)	3.5	3.5	3.5	3.5	3.5	3.5	
	N ¦ _{EC} , e /m	4.10E+07	1.03E+09	7.94E+07	-	1.40E+08	-	
	N ¦c,sc,e/m	3.65E+09	3.65E + 09	3.65E+09	3.65E + 09	3.65E+09	3.65E+09	
	₽' _{EC} ,₩/m	4.74E-03	1.9	2.57E-03	-	3.59E-03	-	
	P'ec.sc, W/m	-	6.7	-	2.53E-01	-	9.96E-01	

W.Turner (Luc Vos's formulas, LHC-Note-150 (7/98), field free regions)

Conclusions:

- Ion-induced desorption not a problem, because of low current
- Vacuum system for VLHC does not require new technology (need details design), we can use experiences acquired with existing systems
 - **LF**: LEP-style vacuum system, conventional NEG or low temperature NEG
 - HF: LHC-style vacuum system, liner (beam screen) abs. necessary (S.R.)
- Alternative solution for HF, low temperature NEG (unknown)

"Mauro Pivi" <<u>mpivi@lbl.gov</u>>, "William Turner" <<u>wcturner@lbl.gov</u>>

