

Superconductor status and prospects

Peter J. Lee (Presenter)

with lots of help from Ron Scanlan (LBNL), Rob Hentges et al. (OI-ST), Eric Gregory (IGC-AS), Bruce Zeitlin (Supergenics), Arup Ghosh (BNL), Takao Takeuchi (NRIM)

David C. Larbalestier, Christopher D. Hawes, Michael T. Naus and Alexander A. Squitieri (UW-Madison)

Very Large Hadron Collider

UW Work Sponsored by:

University of Wisconsin-Madison Applied Superconductivity Center

 $C_{\text{dipole}}(\$) = 3.2\pi B\rho 2560 ((r+0.5)/2)^{0.43} (0.25+0.55(8/L_{d})^{0.6})(0.3+0.7(B/4.3))$

University of Wisconsin-Madison Applied Superconductivity Center

Improvements in J_c for Nb₃Sn

J_c vs time or Nb₃Sn Magnets

Island, NY, Oct 16-18, 2000

Major Development This Year: We now have a conductor development program that can fund industrial R&D outside SBIR box

Funded programs at OI and IGC

- Improved Interaction with manufacturers
- Conductor progress in most areas

University of Wisconsin-Madison Applied Superconductivity Center Island, NY, Oct 16-18, 2000

- Provide a cost-effective, high-performance superconductor of qualities not yet achieved for the high-field magnets required for the next generation high-energy physics colliders
- Target specifications for the HEP conductor include:

J_c (non-Cu,12 T,4.2 K): Effective filament size: Piece length: 3000 A/mm²

40 µm or less Greater than 10,000 m in wire diam. of 0.3-1.0 mm

Less than \$1.50/kA-m (12 T,4.2 K)

From: Ron Scanlan ASC2000

Wire cost:

University of Wisconsin-Madison Applied Superconductivity Center

Conductor Development Program Organization

The CD Group provides

- Input to program plans and goals
- Technical support for the manufacturing R&D work
- Member organizations are BNL, FNAL, LBNL, OSU, TAMU, and U.Wisconsin-Madison
 - -A. Ghosh(BNL)
 - -P. Wanderer(BNL)
 - -G. Ambrosio(FNAL)
 - -P. Limon(FNAL)
 - -D. Dietderich (LBNL)
 - -R. Scanlan(LBNL)

- E. Collings(OSU)
- P. McIntyre(TAMU)
- P. Lee(U.Wisc.)
- D, Larbalestier(U.Wisc)
- B. Strauss(DOE)
- Other contributors include: conductor R&D teams at IGC(see ASC 2000 paper 4MK07) and OST(see ASC 2000 paper 4MK08)

Ron Scanlan ASC2000

Lab and University Support for FY00 is coming from base program funds

- BNL(Suenaga):
- FNAL(Barzi):
- LBNL(Dietderich, Higley): development
- OSU(Collings, Sumption):
- TAMU(McIntyre,students):
- U. Wisc(Lee, students):

Heat Treatment (HT)

HT, $I_{\rm c}$ tests

HT, characterization, cable

Magnetization measurements HT HT, characterization, I_c tests

Total new funding for FY00:

\$500K direct DOE\$1,500K DOE SBIR\$1,100K DOE SBIR

(IGC+OST contracts) support for Nb₃Sn support for Nb₃Al

Ron Scanlan ASC2000

MJR Conductor used in LBNL Magnet RD-3

•*J_c*>2000 A/mm² (12 T, 4.2 K) •*D_{eff}*= 70 μm •*RRR*=3-15

Ron Scanlan ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

OI-ST Goals

- Develop the <u>Hot Extruded</u> <u>Rod (HER) process as a</u> new, cost-effective alternative to their MJR process
- Determine J_c vs filament size relationship for HER process
- Optimize composition to give maximum J_c

HER process billet after extrusion, before salt is removed from cores

Ron Scanlan ASC2000

OI-ST Internal Sn designs seeking lower cost and higher performance

University of Wisconsin-Madison Applied Superconductivity Center

Magnetization of MJR

Magnetization per Total Sample Volume

Data from NIST

- Minor flux jumps <2 T</p>
- D_{eff} ~80-100 μm
- D_{eff} approximates diameter of filament bundle

OXFORD

Hentges et al. (OI-ST), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

LBNL MJR Cable Results

10 T J_c ~3200 A/mm²
12 T J_c ~2100 A/mm²
14 T J_c ~1300 A/mm²
16 T J_c ~750 A/mm²

University of Wisconsin-Madison Applied Superconductivity Center

IGC-AS Program Goals

- Optimize composition to maximize J_c in internal tin conductor
- Determine optimum split configuration to optimize J_c/filament size
- Optimize billet design to maximize wire lengths

3-split sub-elements in 19-stack after reaction (splits are now void regions)

ADVANCED SUPERCONDUCTORS

Ron Scanlan ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

Summary of IGC-AS Conductor Parameters And Properties

<u>Sample Name</u>	Wire Ø. (mm)	LAR Cu/Nb	# ofSub	J _c (A/m) ¹⁴ Ω-m	m ²) at 10 ⁻ 1 &12T	Q _h (m J/cm ³	D _{eff} (µm	Desig	n Compo At. %	osition	I C	Measure ompositi	d on	Ø Fil. (µm)
				Non-	Fil.		@5T	Cu	Nb	Sn	Cu	Nb	Sn	
LDX	0.6	52/48	19	1140	2917	792	28	62.2	25.9	11.9				5.2
Large Fil. Un-Spli	0.6	35/65	37	2200	4622	4860		51.0	33.5	15.5	38.1	39.0	22.0	3.8
Large Fil. 3-Split	0.6	35/65	37	1850	4189	3554	127	54.8	30.7	14.5	47.5	32.1	20.4	3.8
Early Fine Fil	0.6	47/53	19	1950	3924	5621	168	53.4	34.2	12.4	45.7	35.4	16.9	1.4
HD FF 3W-Split	0.8	20/80	19	1768	2993	6544	206	43.5	42.3	14.2	32.0	47.5	20.5	2.3
HD FF 3W-Split	0.7	20/80	19	1910	3233	6547	195	43.5	42.3	14.2	32.0	47.5	20.5	2.0
HD FF 3W-Split	0.6	20/80	19	1906	3231	6142	188	43.5	42.3	14.2	32.0	47.5	20.5	1.7

19-subelement crosssection of fine filament material 0.6mm Ø strand

ADVANCED SUPERCONDUCTORS

19-subelement cross-section high density 3 split material 0.6mm in diameter

From Taeyoung Pyon and Eric Gregory, ASC 2000

Effect of IGC-AS sub-element size on μ-structure being measured at the UW

See μ -structure/diffusion effect in layer vs. filament in MJR slide . .

Lee, VLHC Annual Meeting 2000

University of Wisconsin-Madison Applied Superconductivity Center

VAC ITER Standard HT FESEM fractographs

Microstructure not exactly homogeneous

University of Wisconsin-Madison Applied Superconductivity Center VLHC Annual Meeting, Danfords, Port Jefferson, Long Island, NY, Oct 16-18, 2000

Lee et al ASC

2000

Chemical and Microstructural Changes At the Same Scale

University of Wisconsin-Madison Applied Superconductivity Center

Example II. IGC ITER Internal Sn Filament (low Sn, low hysteresis loss design) Paterur Pateau 2 160 150 **BSE Intensity** IGC Internal Sn NS4504 5%H/Ar HT 140 130 sommer 126 12:32 20 문장 **110** -200-100 0 100 200 300 400 500 600 700 800 900 10001100120013001400150016001700 Distance from Cu(Sn):A15 Interface, nm Very sharp < 50 nm Lee et al ASC nierfaree 2000 **University of Wisconsin-Madison** ary Large Hadron Collider VLHC Annual Meeting, Danfords, Port Jefferson, Long

Island, NY, Oct 16-18, 2000

Applied Superconductivity Center

Aspect Ratio of NbsSn Grains

TWC 1912 Single filament

outside scan

- Individual

12

10

8

6

Frequency, %

Lee et al ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

University of Wisconsin-Madison Applied Superconductivity Center

University of Wisconsin-Madison Applied Superconductivity Center

ECN-Type PIT Example of Very High Sn source

Lee et al ASC 2000

Fracture of Supercon PIT Monofilament Reveals inner large grain region and outer fine grain region around residual powder core

University of Wisconsin-Madison Applied Superconductivity Center

• Shallow gradient in d* across layer, surprising aspect ratio gradient

University of Wisconsin-Madison Applied Superconductivity Center

Grain Boundary Density

University of Wisconsin-Madison Applied Superconductivity Center VLHC Annual Meeting, Danfords, Port Jefferson, Long Island, NY, Oct 16-18, 2000

Lee et al ASC

2000

Recent Microstructure Results

- In low-Sn internal Sn and bronze-process strand we observe the onset of columnar growth simultaneously with a downturn in %Sn at 300-600 nm into filament.
- In the high-Sn strand we observe that the principal variations are across the original filaments and not across the coalesced filament pack.
- This should impact filament size choice for rod based internal Sn.
- In the ECN style PIT monofilament, with a very high Sn content powder core, a uniform, and fine grain size can be achieved over a very long distance.
- See following results on OI-ST powder route . . .

University of Wisconsin-Madison Applied Superconductivity Center Island, NY, Oct 16-18, 2000

Cabling work in support of the conductor development program includes

- Reducing cable I_c degradation for high J_c Nb₃Sn strands
- Understanding the J_c vs strain behavior for Nb₃Sn strands made by different processes
- Fabricating new cables designed for react and wind coils
- Exploring cabling alternatives for a more costeffective conductor

Ron Scanlan ASC2000

PIT Nb₃Sn strands at edge of Rutherford cable

Moderately compacted

Highly Compacted

Ron Scanlan ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

PIT strand Chronology from Twente

pre-print of paper 4LB-02, presented at the Applied Superconductivity Conference, Virginia Beach, September 2000

TABLE II CHRONOLOGICAL SUMMARY OF THE PIT-CONDUCTOR DEVELOPMENT PROGRAM								
PIT wire	J _c non-Cu @ 10 T, 4.2 K (A/mm ²)	Cable performance						
1998								
ECN binary 192	2200	40 µm filaments						
SMI binary 492	1890	Ie too low						
SMI binary 504 (1)	2650	damaged filaments						
<u>1999</u>								
SMI binary 192	, 2700	damaged filaments						
SMI ternary 192	3200	damaged filaments						
<u>2000</u>								
SMI binary 504 (2)	2200	OK						
SMI ternary 504	2800	OK						

Andries den Ouden et al. ASC2000

Fig. 1. Critical current at 4.2 K of binary and ternary PTT-Nb₃Sn conductors as a function of the self-field corrected applied magnetic field of both virgin wires and extracted strands. Also shown is the predicted critical current of the binary extracted strand at 5.7 K.

University of Wisconsin-Madison Applied Superconductivity Center

Analysis of Layer J_c and Q_{gb} in nonalloyed SMI-PIT strand

In this partial fracture crosssection of a SMI-PIT strand, three distinct grain size/morphology regions are observed.

- Columnar adjacent to the Nb
- Fine equiaxed center
- Very large grains adjacent to core.

If the very low grain boundary density in the large-grain area means that this area does not contribute significantly to I_c then we can adjust the J_{csc} data to reflect the "good" area.

Lee et al. (UW)

University of Wisconsin-Madison Applied Superconductivity Center

Non-Alloyed SMI PIT *J***csc**

When the J_{csc} data is calculated excluding the noncontributing large grain area the performance of the PIT A15 more closely matches the high J_{csc} internal Sn strand.

The higher J_c of the new Nb(Ta)₃Sn can be expected to increase the J_{csc} further

University of Wisconsin-Madison Applied Superconductivity Center

Specific Grain Boundary Pinning Comparison

University of Wisconsin-Madison Applied Superconductivity Center VLHC Annual Meeting, Danfords, Port Jefferson, Long Island, NY, Oct 16-18, 2000 High Sn and PIT strands have 50% higher Q_{gb} (and J_{csc}) than ITER style strands

The new Nb(Ta)₃Sn PIT should not have the high field tail off observed here.

EDX Measurements

Note: again we have highest Sn in

University of Wisconsin-Madison Applied Superconductivity Center

675 °C T_c Profiles in SMI PIT

The Nb₃Sn in PIT filaments has progressively higher Sn into the filament from the barrier, thus the change in properties through the layer can be analyzed without the shielding that occurs in bronze and internal Sn filaments.

4-8 hr plots have a steeper slope.

- Layer growth visible.
- After 32 hrs growth rate slows.
 - Tail appears at ~ 14 K after 47 hour HT.

Hawes et al. (UW) ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

Powder-in-tube Nb₃Sn development at OI-ST

- Ta+Sn+Cu mixed together, similar to Tachikawa et al. process (ASC'98)
- thick (Nb,Ta)₃Sn layers
- high Nb₃Sn layer $J_{\rm c}$
- high B_{c2} \bigcirc FORD Hentges et al. (OI-ST), ASC 2000

200 μm

University of Wisconsin-Madison Applied Superconductivity Center

µ-Structure from UW shows fine enough grain size for pinning and high Kramer extrapolation

The effect of heat treatment on J_c and B_{c2} for PIT wire. B_{c2} data is extrapolated from 16 T.

Note grain size gets smaller towards the outside.

University of Wisconsin-Madison Applied Superconductivity Center

FNAL R&W R3I-00741a Mfg. LBNL 2/17/00 6-in-1 Cabling

Ron Scanlan ASC2000

< 5cm>

University of Wisconsin-Madison Applied Superconductivity Center

Rutherford cable made from sub-cables with 4 copper and three superconductor strands

Ron Scanlan ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

A High Current Density Low Cost Niobium₃Tin Conductor Scaleable to Modern Niobium Titanium Production Economics MEIT Approach

• To meet the VLHC target one has to

- Increase current density by adding niobium and tin at the expense of copper
- Reduce cost by designing a process that can be manufactured in large scale 450kg billets
 - eliminate barrier?, lower cost barrier,

Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison VL Applied Superconductivity Center

Design Approach

- Single element composite for fabricability
- Fine filaments to speed reaction and decrease grain size
- Segmented to reduce loss
- Minimize composite copper thus boosting tin and niobium
- Evaluate need for barrier

Zeitlin (Supergenics) Gregory and Pyon (IGC-AS) ASC 2000 BAZ1 six segment wire 0.142mm

University of Wisconsin-Madison Applied Superconductivity Center

Conductor Configurations

Cross Section Before Reaction

Zeitlin (Supergenics) Gregory and Pyon (IGC-AS) ASC 2000

Billet,178mm	BAZ1 6 seg.	BAZ2 3 seg
Filament #	1434	1475
Nb: area%/At%	31.7/28.0	32.7/29.1
Sn: area%/At%	27.1/16.1	27.1/16.2
Cu: area%/At%	41.2/55.9	40.1/54.7
Bronze At%	22.4	22.8

Reduced Sn	BAZ1 6 Seg.	BAZ2 3Seg.
Nb: area%/At%		29.5/24.9
Sn: area%/At%		22.2/12.6
Cu: area%/At%		48.3/62.5
Filament Size at 0.14 mm	1.9 µm	1.9 µm
Segment Size at 0.14 mm	22x55 µm	22x110 µm

University of Wisconsin-Madison Applied Superconductivity Center Island, NY, Oct 16-

MEIT Fabrication Results

179 mm 1434 filament Billet

Fabrication and wire drawing

- Processing was smooth,
 - one break at 1.5 mm , mechanical
- 10000 and 30000 meter lengths at 0.14 mm
 - Break was mechanical, commercial wire draw

Barrier required at high tin

- could engineer barrier free but $J_{\rm c}$ would suffer

Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

Reacted Cross Sections

TaBrBaz1 Tantalum Barrier 0.2mm

BAZ2A lower tin 0.20 mm

Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

Test Results

Data from Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

- 19 element 0.9 µm J_c normalized to Nb 5400-5500 A/mm² at 12 T
 - 650 °C 240 hrs
- Mono element with barrier (MEIT), 2 μm filament 4800 A/mm²
- MEIT at 1.4 µm less 3600- over-aged?
 700 °C 24 hrs.

Zeitlin (Supergenics) Gregory and Pyon (IGC-AS) ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

Cost Model Assumptions by Supergenics

- Full scale 300 mm dia. billet as per table
- Two production volumes, 300 and 12000 tonnes
- 400 % and 300% overhead rate with 40% GM
- Material prices as quoted from suppliers
- Barrier introduced at later stage of processing
 - semi to continuos clad

Zeitlin (Supergenics) Gregory and Pyon (IGC-AS) ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

Design Elements of Full Scale Billet

Full Scale Billet

Clad Niobium

Extrusion Billet	300 mm dia. x 810 mm length	250 mm dia. x 610 mm length
Copper Clad Nb Hex Rod	3.2 mm	200 mm
Tin Alloy Core	2.6 mm	
Filament #	4614	1
Nb/Sn/Cu %	36/24/49	66.4
Yield	85% - 429 kg	94% - 239 kg

Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

MEIT Cost Model Results

0.25mm core@300 %OH	J _c A/mm² 12 T	Price \$/m Nb₃Sn	Price \$/m cable	Price \$/kAm
5%Ta Bar	2000/3000	0.12	0.50	1.23/0.82
2.5%TaB	2000/3000	0.10	0.42	1.06/0.71
5% Ta40Nb	2000/3000	0.11	0.46	1.12/0.75
2.5% Ta40Nb	2000/3000	0.10	0.40	1.00/0.67

Zeitlin (Supergenics), Gregory and Pyon (IGC-AS), ASC 2000

University of Wisconsin-Madison Applied Superconductivity Center

MEIT Conclusion

- Target costs and performance for VLHC appear feasible
 - MEIT conductor promises to be easy to fabricate
 - Low cost cladding technique still to be developed
 - SnTi alloy has to be commercialized to lower cost
 - Layer J_c of 5500 A/mm² with 50% Nb could yield
 2750 A/mm² at 12 T
 - Need to improve understanding of layer current density and additives - build margin

Zeitlin (Supergenics) Gregory and Pyon (IGC-AS) ASC 2000

Rapid quench process Nb₃Al has advanced significantly this year.

- Best material has similar J_c at 12 T, 4.2 K, A-15 area to MJR Nb₃Sn
- Major advances this year relate to the super high field needs of 1 GHz NMR (23.5 T @ 1.8 K)
 - DRHQ shows dramatic J_c improvement at > 20 T
 - D = 2nd RHQ treatment added
 - 1st RHQ Synthesis of Nb-Al Supersaturated solution
 - 2nd RHQ phase transformation to A15 Nb₃Al
- New TRUQ process has greater potential for cladding and cabling than older RHQ processes. After quenching it has a ductile bcc supersaturated solid solution. "Transformation-heat-based up-quenching."

University of Wisconsin-Madison Applied Superconductivity Center Island, NY, Oct 16-18, 2000

Critical Current Density, A/mm²

100.000 At 4.2 K Unless Otherwise Stated YBCO 10,000 YBCO 75 K H||a-b Ă - 🛦 - 🛦 2212 1,000 2223 Nb₃Sn 2212 ĸ 8 Nb-Ti-Ta 2223 Nb₃Al 100 1.8 NbTi Nb₂Sn YBCO 75 K H||c PbSnMo₆S₉ 10 15 25 5 10 20 0 30 Applied Field, T

DRHQ process from

NRIM shows further

potential of Nb₃Al

University of Wisconsin-Madison Applied Superconductivity Center

TRUQ

Figure 2. Illustration of TRUQ: (a) the propagation of the transformation interface from the left to the right in a Nb/Nb(Al) composite quickly pushed into 1000 C region in a gold-mirror furnace, (b) the enthalpy release during the transformation from bcc to A15 and (c) the temperature pro le for the whole heat treatment process.

From Takeuchi et al. Sc. Sci. Tech. Vol.13, 2000

University of Wisconsin-Madison Applied Superconductivity Center

Figure 3. (a) and (b) non-Cu versus curves of TRUQ-processed Nb₃Al tape conductor (3.5 mm in width and 0.3 mm in thickness), in comparison with those of conventional, low-temperature-processed, JR Nb₃Al [17] and simple RHQT, JR Nb₃Al (1.25 mm in diameter) [4] conductors, and a modi ed JR Nb₃Al (1.25 mm in diameter) [4] conductors, and a modi ed JR Nb₃Al is made by shifting the (4.2 K) data toward the higher eld by 1.5–2.5 T.

Cladding of RHQT - NRIM

External stabilization for RHQT JR Nb₃AI by mechanical cladding method: (a) transversely overall crosssectional image, (b) J_c and I_c against R.A. at Cu-cladding.

From: Takeuchi et al. ASC 2000 paper 5ML02

University of Wisconsin-Madison Applied Superconductivity Center

Bi-2212 round wire continues to show promise for accele<u>rator magnets</u>

- J_c(12 T, 4.2 K, non-Ag) > 1500 A/mm² in new material (ASC2000 paper 2MC03)
- Long lengths(> 250 m) are being produced; scale-up to >1000 m unit lengths is in progress.
- J_c vs strain for Rutherford cables looks promising(ASC 2000 paper 4MG06)
- React and wind coils are being made (ASC 2000 paper 3LE06)
- cost is still a major issue

Ron Scanlan ASC2000

University of Wisconsin-Madison Applied Superconductivity Center

Bi-2212 IGC-AS

BSCCO-2212 0.81mm wire

427 filaments, 15µm filament diameter

- L. Motowidlo, R. Sokolowski IGC-AS
- T. Hasegawa, Showa Electric
- R. Scanlan, LBNL

80 m of cable fabricated

 $I_{\rm c}$ in self-field 3000 A

From Arup K. Ghosh, BNL Accelerator Magnet Divn: VLHC-FNAL Magnet Technologies Workshop

University of Wisconsin-Madison Applied Superconductivity Center

BSSCO-2223 Multifilament Tape

Conductors for BNL HTS coils					/ _c		Axial	
	Vendo	rLength	Width	Thickness	77K,SF)	stress	Matrix
		[m]	[mm]	[mm]	[A]	[A/mm]	[Mpa]	
1998	IGC	6x100	3.55	0.22	25	32		Ag
1999	NST	210	3.02	0.238	27	38	150	Ag-alloy
1999	NST	590	3.02	0.238	31	43	150	Ag-alloy
1999	VAC	155	3.78	0.22	53	64	>90	Ag-Mg
1999	VAC	155	3.82	0.23	58	66	>90	Ag-Mg
1999	VAC	155	3.86	0.23	58	65	>90	Ag-Mg
2000	ASC	210	3.04	0.171	68	131	75	Ag-alloy
2000	ASC	210	3.04	0.175	71	134	75	Ag-alloy
2000	ASC	210	3.13	0.175	81	148	75	Ag-alloy
2000	ASC	210	2.93	0.163	70	147	75	Ag-alloy

Cost \$25/m

From Arup K. Ghosh, BNL Accelerator Magnet Divn: VLHC-FNAL Magnet Technologies Workshop

Very Large Hadron Collider

University of Wisconsin-Madison Applied Superconductivity Center

What does the future hold for HTS

- YBCO needs a lot of development before it can be a realistic conductor for magnets.
 - Conductor of choice for magnets operating at temperatures > 20 K
- BSCCO-2223 has slowly but steadily improved. Km lengths of reasonable J_c are feasible. More uniform conductor now available with improved manufacturing techniques
- BSCCO-2212 is potentially a better choice than 2223 at 4.2 K.
 - Probably will be less costly than 2223.
 - Can be fabricated as a tape or round wire suitable for Rutherford cables
 - Potential J_c at 12 T exceeding that of Nb₃Sn

From Arup K. Ghosh, BNL Accelerator Magnet Divn: VLHC-FNAL Magnet Technologies Workshop

University of Wisconsin-Madison Applied Superconductivity Center

FY 01 and beyond

- Continue programs at IGC and OST
- New Conductor Initiatives
 - --Powder in tube RFP (anticipate 3-4 responses)
 - --Nb₃Al Precursor Fabrication RFP (anticipate 3-4 responses)
 - --Special processing facilities
- Additional support for heat treatment, characterization, and I_c testing work
- Scale-up key manufacturing steps to establish large scale processing costs
- Develop realistic cost data to include in VLHC design studies

New Materials Program--Summary

- New Materials Program is underway, with broad community support and participation
- Two contracts are in place (IGC-AS and OI-ST)
- Nb₃Sn manufacturers are using this as an opportunity to rebuild their development teams
- I am optimistic that we can meet the performance and cost goals for Nb₃Sn
- Nb₃Al and Bi-2212 show promise as potential high field dipole conductors

Ron Scanlan ASC2000

VLHC Conductor 2000 Summary

- Conductor Development Program Started at last the major suppliers get direct HEP focused research money.
- Internal Sn in transition to high J_c and lower cost. What should our J_c vs \$\$\$ balance be at this point?
- Nb₃AI: the most progress in 2000 but still expensive and developments are for short lengths. *How important is strain intolerance - with magnet design advances?*
- HTS slow but steady progress. How long would you like to wait?

University of Wisconsin-Madison Applied Superconductivity Center VLHC Annual Meeting, Danfords, Port Jefferson, Long Island, NY, Oct 16-18, 2000

