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Abstract

We present a general solution to the classical problem of three bodies,
interacting under their mufual gravitational attractions, as a set of nine power
series for the rectangular coordinates as functions of time. The coupled recur-
rence relations for the expansion coefficients are derived directly from the dif-
ferential equations of motion by integration in the complex é—plane. This solu-
tion is applied in two illustrative cases: the first, a restricted probleﬁ with
one of the three masses equal to zero, the second, a more general example with

the three bodies having nonzero masses.



In our accompanying note,1 we have shown how the initial value problems
that arise in nonlinear mechanics can be solved by power series. The reéurrence
relations for the expansion coefficients were obtained directly from the differen-
tial equations by integration in the complex time-plane. Here we would like to
present this type of solution for the system of three masses moving under the mu-
tual action of their Newtonian gravitational attractions - the three body
problem.zﬂh Since the notation for three bodies, each with three rectangﬁlaf co=
ordinates, can get rather confusing, we shall use Greek stscripts for the desig-
nation of the bodies and Latin superscripts for the rectangular coordinates.
Thus the coordinates of the body named H are written as

iﬁ = (fi’ fj’ fi) = (fu9 &y hu) ’ (1)

where U can take on the values 1, 2, or 3. The acceleration of a body under the

gravitational action of the other two bodies is accordingly
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The repeated Latin index indicates a summation over & = 1, 2, and 3, while for

the Greek indices a sum is indicated explicitly. The units employed in Eq. (2)

. - . By v P
are those adopted in celestial mechanics: ™’ 3 all masses are in units of the

solar mass, distances are in astronomical units, and times are in mean solar
: . 25 & ; : ;
davs. The multiplying factor (k”) is the square of the Gaussian gravitational
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constant [k = 0.01720209895 day J. For the solutions of these nine second-

&
order differential equations, we assume nine power series for the rectangular co-

inatse of the three bodies (M =1, 2, 3), that is,
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It is the coupled recurrence relations for the expansion coefficients (au 0’
3

b ) that we must derive. To illustrate the procedure, we write out the
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first equation (W =1, k = 1) of Eq. (2) as
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Integrating this differentizl equation according to the method of Ref. (1), we

obtain
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To proceed further, it is necessary to find the power series expansions for
some of the factors within the contour integrals of this equation. Thus, a
typical one is-
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For the denominator it is best to go step-by-step. Firstly,
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Secondly, we write
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with the sequence of coefficients, Bn(12), given by
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Thi:21w, we find for the reciprocal of Eq. (9) the series
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Substitution of Eq. (11) and the similar relation involving Cn(13) into Eq. (5)

now yields
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Whence the first recurrence relation (n > 1) follows, i.e.
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The remaining eight recurrence relations are similar to Eq. (l4a) with the in-
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appropriately permuted. For the sake of some completeness we list those

rty

or the other two rectangular coordinates of the body numbered one:
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In short, the power series expansions, Eq. (3), combined with the nine
coupled recurrence relations [see Eq.-(lA)],are the general solutions to the
ordinary differential equations, Eq. (2). These series are all convergent
within the circle of convergence of smallest radius (see Ref. (1)). The initial
conditions of the three masses are specified by the eighteen coefficient (31,0;
aj. 1% b;.0° bl,l; CI;O; 1,13 82,05 32,13 +- 3,05 c3!l). All the higher
order expansion coefficients are evaluated sequentially in groups of nine by
employing the full set of recurrence relations like Eq. (14), in conjunction
with the subsidiary relationships like Eqs. (8, 10, 12). Following the trajec-
tories of the three bodies for times beyond the circle of convergence entails
the process of analytically continuinga’6 these power series, as discussed in
Ref. (1). L

To test the more practical aspects of the above approach, we have written

program which, given the initial conditions for the three masses,



uses the recurrence relations to sequentially calculate a set of 44 expansion co-
efficients for each of the nine rectangular coordinates. By choosing successive
initial times that are a small fraction (» 1/3 to 1/10) of the radius of
convergence, we have found the coordinates on the trajectories of the three
Eodies to an accuracy of about sixteen decimal digits (double precision on the
IBM PC). At each of these times a check was made on the constancy of the ten

25 of the motion: the location of the center of mass, the total

integrals
energy, the velocity of the center of mass, and the components of the total angu-
lar momentum.

The first example is a restricted problemz’4 with the initial parameters
and values given in Table I. The zero mass body (m2 = 0) starts at the
perihelion position (corresponding to a two-body Keplerian problem) with a veloc-
ity relative to the primary body (ml = 1) which weuld, for a two-body'broblem,
result in a sidereal period equal to (2m) Gaussian time intervals (1 Gaussian
time interval = k-l = 58.13244087 days]. The mass of the third body is chosen
in such a way that its sidereal period equals 16 Gaussian time intervals. Two
additional initial conditions are that the velocity of the center of mass be
zero and that the métions start out in one plane. We should emphasize that all
these restrictions on initial conditions are arbitrary and only serve to sim-
plify our illustrative example. Figure (1) depicts the three trajectories
calculated. Bodies (1) and (3) trace out the expected closed (periodic) orbits,
while the massless body (2) follows a complicated spiral. The small numbers
near each EUrve are the elapsed time (Gaussian time intervals) from the start of
the motions. The number of incremental time steps (At = 0.1) for each

trajectory was 160, and the associated radius of convergence varied from about

0.38] to about 2.47 Gaussian time intervals.



Our second illustration is more general, although again, to make the pre-
sentation easier, we have let the initial motions be in one plane. 1In Table
II we list the appropriate .initial conditions. The second body now has a mass
which would, for the two-body motion relative to the primary, result in a side-
real period of 6 Gaussian time intervals. In Fig. (2) we exhibit the motion of
the three interacting bodies for approximately one revolution of bodies (1) and
(3). It is to be noted that none of the trajectories closes on itself. -
Compared to our previous examples (Fig. (i)], the mofion has speeded up with
body (2) continuing to spiral while the path of the primafy has developed turns
and even a cusp (actually a small loop). In this example it was necessary (in
order to maintain the desired accuracy with 44 expansion coefficients in the
power series) to change the incremental displacement in time from 0.1 to 0.05
when the radius of convergence dropped below 0.3 to as low as 0.162 Gaussian
time intervals.

It is important to mention that in our two examples the small radii of
convergence occur for those configurations where two of the bodies come rela-
tively close to each other. This behavior would be expected since Newton's law
is singular for a collision of two of the bodies. Under this circumstance, the

power series expansions have a radius of convergence equal to zero. The best

Sy tid have

way of handling collisions and the related problem of regularization
been the subjects of discussion for a long time, but we have not inyestigated
these aspects of the three body problem.

In conclusion, we would like to point out that the basic method employed
in this paper for the case of three bodies can just as well be applied to the
case of n bodiag moving under their mutual gravitational attractions. Though
this statement may be true in principle, the actual number of bodies that can be

~easw WIE]D

dzalt with in a practical preblem remains a topic for future study.
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TABLE I. Parameters and Initial Values for a Restricted Three Body

Problem, see Fig. (1).

Masses (Solar Masses)

m]; mp; m3 1; 05 (w2/8) -1

" Two-Body Semi-Major Axes (AU) and Eccentricities

as; az; ep; ej Lia 2% 1042500 -2

Two-Body Sidereal Periods (Gaussian Time Intervals)

Py; P3 2m; 16

Initial Values, Coordinates (AU) and Velocities (AU/Gaussian Interval)

31’0; bl’o; Cl’o; 31’1; bl’l; cl,l 03 0; 0; 0; —0.18221557; 0
az!o; bZ,O; CZ,O; 32’1; bz’l; €2,1 0.8; 0; 0; 0; 1.04252930% 0
az 05 b3,05 ©3,05 23,1} b3’1; 3,1 1.6; 0; 0; 0; 0.77969680; 0

_ ) 2
Total Energy, (Solar Masses) (AU/Gaussian Interval)

E=T-1V _5.84251375 x 102

Center of Mass Coordinates (AU)

£ § Bodnd Do, 0.30308885; 03 0

Center of Mass Velocity (AU/Gaussian Interval)

VS Vgi Vh 0; 0 O

Total Angular Momentum, (Solar Masses) (AU)2 (Gaussian Interval)_l

Jes Igi In 0; 0; 0.29154491




12

Figure 1
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TABLE II. Parameters and Initial Values for the More General Three

Body Problem, see Fig. (2).

Masses (Solar Masses)

m]; mp; m3 1 (n2/9) - L3 (m2/8) - 1

Two-Body Semi-Major Axes (AU) and Eccentricities

agj azj ez; e3 T 23 002540.2

Two-Body Sidereal Periods (Gaussian Time Intervals)

Py; B3 6; 16

Initial Values, Positions (AU) and Velocities (AU/Gaussian Interval)
a1,05 b1,05 €1,05 21,13 b1,15 €1,1 0; 0; 0; O; -0.26213395; 0
22,05 b2,05 €2,0% a2,1% b2,13 c2,1 0.8; 0; 0; 0; 1.02041588; 0

23,04 b3,0; c3,05 23,13 b3,l; c3,1 1.6; 0; 0; 0; 0.69977842; 0

: 2
Total Energy, (Solar Masses) (AU/Gaussian Interval)

E=T-10 -0.15318558
Center of Mass Coordinates (AU)
oiinh Bt e, 0.33918000; 03 O

Center of Mass Velocity (AU/Gaussian Interval)

VE; Vgi Vh 0; 0; O

2 2 -1
Total Angular Momentum, (Solar Masses) (AU)” (Gaussian Interval)

Jei Jgs Jh 0; 0; 0.34053804
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Figure Captions

Fig. 1.

Fig. 2.

Trajectories for a restricted problem of three bodies, see Table I.
Trajectories for a. general problem of three bodies, see Table II. The
lower case letters near the points on the trajectories indicate the
elapsed time interval from the start of the motion. Corresponding to
the sequence, a through §, these times are 1, 2, 3, 4, 5, 6, 7.05,

8.05, 9, 10.05, 11.05, and 11.95 Gaussian time intervals.



