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Abstract

We present 2 new method of solving the nonlinezr ordinary differential
equations with given initial values, such as arise in nonlinear mechaniecs. The
recurrence relations for the expansion coefficients of the power series solu-
tions are obtained directly from the differential equations by integration in
the complex pléne. We illustrate the method by applying it to the Van der Pol
equatiém, the Volterra problem of conflicting populations:, and the Henon-Heiles

problem.
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The solutions of the equations of motion of a classical dynamical system

can be expressed as power series expansions of the form

£e) = 9 a(t-z )%, (1)
n ]
n=20
wnere f(t) is a dynamical varizble dependent on the timz t. The initial values,
position and velocity, are given by the coefficients 2, and ay specified at the
time t = zy- We use the notation 24 for the initial time to emphasize that the

expansion, Eq. (1), is made about a nonsingular point of the function f. Under

these conditions the radius of convergence of the power series is

R = lim |a |—1fn . . (2)
a n
n+ o

Up to this point we have, to set the stage, repeated the early péft of sec-
tion 32 of Whittzker's book.1 However, we would now like to show how the recur-
rence relation, which gives the a_ coefficient in terms c¢f the lower order ones,
n be derived directly from the differentizl equation of motion by integration

in the complex t-plane. As a preliminary step, we express the a_ coefficient as

2 contour integral dependent upon the kth derivative, fck), of the function
£ = f(o), thus
. = () d &5 )
n n!27i n-k+l ° ; (3)
(w=z)

Bere k=0, 1; 2, 3,4y whilen =k, k + 1, k + 2,...; and the center of the in-
tegration contour is at z) with the path within the circle of convergence. It
is the zpplication of Eq. (3) that constitutes the kernel of our method. Rather

than continue with a general development, we shall, in the interest of clarity,

fix our zttention on z number of equations of nonlinear mechanics.



The first is the now-classic equation of Van der Polz’3
(
£ o uts =23 g (4)

Dividing this equation by the quantity (w - zo) and integrating about a contour

within the circle of convergence, we have

w £ ) L g1 .y (g 26 haw e :
vz vz, W=z W=z (5)

. =
The first, second, and fourth terms are evaluated immediately by applying Eq.

(3), while the third term requires Eq. (1) and its derivative. The result is
2a, = Ja (l—az) - a (6)
g “HB M) = 5y _

a relationship that we could have written down at once by considering Eq. (4).
In order to derive a2 higher coefficient a, in terms of the lower order coeffi-

cients we generalize the above procedure, dividing the differentizl equation by

=1
the factor (v - zo)“ ". The initial integration yields
2,413
o ool - U dw f f - :
n(n l)anl pin l)an_l + T z;::—;;:T + 2 _, 0 . (7
0

The contour integral in this equation is found by using Eq. (3) and Eq. (1).

Thus:
1 dw £ _ 1 ot S
271 n-1 271 ;2 Sl e 2 0
(w-z.) (w=-z.) 2=0
0 0
n-2
G dw f - : '
271 Z % n-2-1 Z 20%n-2-2 ° (8)
£2=0 (w*zo) 220
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1 dw £ f "7
Zni e | Z kay Z 20 %n-k-g-1 (9)
_:I_(W z ) k=1 £=0

The pertinent recurrence relation is then

n-1 n-k-1
n(n—l)an = u(n—l)an_l - H ke, Z #%n-k-2-1 T -2’ ;
~ b ; (10)

W

for all n > 2.
Equation (1), with this relation defining the coefficient a_; is the general
solution to the nonlinear Van der Pol equation, valid within the circle of
convergence specified by Eq. (2). Since the expansion coefficients can be
evaluated to zny desired order, a good numerical estimate of the radius can
also be calculzated by going to large values of n. Successive vzlues of.the
dynanical varizble are then obtainable by the process of znalytically

2]l points, ezch within the

o 1lg

continuing this solution for z sequence of new in

previous circle of convergence. We would like to mention that the generzl solu-
tion found is not a perturbation expansion in powers of the nonlinearity
parameter p of the vén der Pol equation, and it is not limited to small
values of . The complexity of the nonlinear behavior manifest itself in the
involved depencence (Eq. (]0)) of successive expansion coefficients on the ini-
tial values ané the nonlinearity parameter, or equivazlently on the locatiom of
the nearest singularity in the complex t-plane which determines the radius of
convergence; As the strength of the nonlinearity becomes smaller (p + 0), the
singularity moves toward infinity and the dynamical behavior of the simple har-
monic oscillator appears.

Another illustrative example which we would like to present is that of the

growth in two pcpulations conflicting with one znother. This problem of



& ’ . Y
Volterra 1is clearly formulated in the book by DaV15,3 and the two appropriate
first order nonlinear coupled differential equations are written, in our nota-

tion, as

SN gie o) (11a)

and

(1)

g = -B(g - £g) . (11b)

W

The multiplicative factors, & and B, are the growth constants. The two power se-—

ries for the independent variable are assumed to be

£(e) = Eg:lan(t - 20)n 5 ‘
n=0 -(12a)
and
g(c) = p E_(E = 2" (12b)
n=0

vtk : e n s . .
when Eqs. (1lz) zand (11b) are divided by (w - ZU) znd then integrated in the
complex plane zbout the nonsingular point 2y, one arrives at the two coupled re-
currence relations

fi—1
na  =aa ;- o ) biag
-0 (13a)

=

and

n-1
:bn - _an—l +8 :E: aﬂbnﬂﬂ—l -
0=0 (13b)



Corresponding to the sets of coefficients, a, énd-bn, each power series has its

own radius of convergence, and in any numerical calculation it is necessary to

work within the smaller of-these two radii, where both series are convergent.
As a third application we consider the two dimensional model that Hénoq

. 5 : . . . .
and Heiles  have studied relative to the existence of a third integral of mo-

tion. The dynamiczl system has the invariant Hamiltonian

aee, 10,6, = L [(£10)2 4 ()]

1 F2. 2 2 13
03 [Feg] wrge g0 (1)

and the accompanying equations of motion

f(2) = -f - 2fg , (152)

and

8(2) =g 82 = f2 . (15b)

Once zgain we zssume- the dynamiczl variables, f znd g, to be power series, Egs.
(122-12b), and perform the necessary integrations in the complex plane. The

outcome 1is the pair of coupled recurrence relations

= - - 6
2a2 a, 2b0a0 y : (16a)
o 2 _ 2
2b2 = bo + bO ag s (16b)
and for n > 3,
n=2



n-2

n(a=Db, = -b__, + 3 (bybo2g =~ %ne2’ - ,
- =0 (17b)

In summary, the method of solving a set of nonlinear ordinary differen-
tial equations, as demonstrated in this paper, converts these equations into a
set of -coupled recurrence relations. Associated with each sequence of expansion
coefficients there is a circle of convergence. Within the smallest of these

=
circles, all the power series are convergent. To follow the evolution of a
dvnamical variable in time beyond this circle, it is necessary to analytically
continue the solution, that is, to evaluate the expansion coefficients with the
same recurrence relations but at a new origin and determine z new circle of
convergence. This step-by-step feature of using the general series solutions is
a burdensome zspect of the process of analytic continuation. However, we may
infer that this piecemeal characteristic is inherent in the nature of the
y 3

singulerities” (Iixed and movable) which exist in the complex t-plane for
nonlinear differential equations. Numerical methods which use less than the gen-
eral solutions, essentizlly ignoring the nearby singulsrities, can give rise to
hidden errcrs in the time evolution of a dynamical variable, particularly in
coupled nonlinear systems.

To further test our method we have also found the series solutions of the

i 3 6 3 '

Duffing” problem, the Lorenz problem, as well as the simple pendulum™ problem.

4 7 : .
In an accompanying note, we consider the classical three body problem.

It is a pleasure to thank Erich Willen for interesting discussions.,
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