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Fabrication and Test of TQS01—A 90 mm
Nb3Sn Quadrupole Magnet for LARP

S. Caspi, D. Dietderich, P. Ferracin, S. A. Gourlay, A. R. Hafalia, R. Hannaford, A. F. Lietzke, A. D. McInturff,
G. L. Sabbi, A. Ghosh, A. N. Andreev, E. Barzi, R. Bossert, V. V. Kashikhin, I. Novitski, G. Whitson, and

A. V. Zlobin

Abstract—In support of the development of a large-aperture
Nb3Sn superconducting quadrupole for the Large Hadron
Collider luminosity upgrade, two models (TQS and TQC) with a
90-mm aperture are being constructed at LBNL and FNAL within
the framework of the US LHC Accelerator Research Program
(LARP). These models use two identical Nb3Sn coils but have
different coil support structures. This paper describes the fabri-
cation, assembly, cool-down and test of TQS01—a model based
on key and bladder technology with supporting iron yoke and an
aluminum shell. Comparison of the test measurements with design
expectations is also reported.

Index Terms—LARP, Nb3Sn, superconducting quadrupole.

I. INTRODUCTION

THREE US laboratories (BNL, FNAL, and LBNL) have
collaborated in a development program towards the fabri-

cation of a full scale Interaction Region (IR) quadrupole magnet
made of conductor. The TQ-series magnets are the first
R&D step towards an upgrade of the LHC IR and are part of
the LHC Accelerator Research Program (LARP) [1]. The de-
fined operational goals (gradient 205 T/m, bore 90 mm, ex-
cellent field quality, and high radiation loads) required the use
of superconducting cable. Using virtually identical coils
in two different structures LBNL (magnet TQS01) and FNAL
(magnet TQC01) have built and tested two 1-meter long mag-
nets. The LBNL design is a shell based structure using “key and
bladder”, successfully tested in a number of different
magnets [2]–[7], while the FNAL design is a collar based struc-
ture [8], [9].

The shell-based structure approach uses bladders for precise,
room temperature pre-stress control, with negligible stress
“overshoot” during magnet assembly. Interference keys are
inserted to retain the pre-stress and allow bladder removal.
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Fig. 1. TQS01 magnet cross section showing coils, fillers, pads, keys, yokes,
skin and axial supporting rods.

A tensioned aluminum shell compresses internal iron and coil
components, and applies a substantial fraction of the operational
pre-stress during cool-down. Accordingly, the final coil pre-
stress is monotonically approached from below, without over-
stressing the fragile conductor. A cross section and assembly
are shown in Figs. 1–2.

In Section II the structural design and instrumentation is out-
lined. The assembly and cool-down results are covered in Sec-
tion III. In Sections IVthrough 6 the test results and conclusions
are discussed.

II. MAGNET DESIGN AND INSTRUMENTATION

A. Conceptual Design and Parameters

The magnet design and analysis were fully integrated making
use of three major programs: ProE (CAD), TOSCA (magnetic
analysis), and ANSYS (structural analysis). A friction factor
of 0.5 was used between all components. The results provided
1) the target room-temperature azimuthal and axial assembly
pre-stress 2) predicted the cool-down impact on pre-stress and
3) provided axial and azimuthal response during excitation. The
specs for the magnet stress at 4.5 K were set to prevent any pos-
sible coil-island separation in the straight section and the ends.
One of the more distinct differences between TQS01 and the
TQC01 was the way pre-stress was applied during assembly and
the magnitude of axial pre-stress. Based on extensive ANSYS
studies 800 kN (at 4.4 K) of axial force was needed to pre-
vent coil-island separation in the ends and overcome frictional
forces between the coils and the surrounding structure. This
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Fig. 2. View of coils and supporting structure.

Fig. 3. End plate and aluminum tie rods used for axial compression.

was accomplished by four aluminum tie-rods pulling end plates
against the ends of the coils at cool down (Fig. 3). Only 35% of
that force is actually applied during assembly the rest builds up
during cool-down by the contracting axial aluminum tie rods. To
overcome frictional forces the final axial force had to be more
than twice the maximum Lorentz force. To reduce the influence
of friction, pre-stress during assembly was first applied axially
with a hydraulic piston and then azimuthally with bladders. A
cool-down test at 77 K determined that the friction factor be-
tween the yoke and the shell to be 0.5. We assumed the friction
factor between all other components to be the same and 0.5 was
used in the analysis.

Design parameters and calculated pre-stress are shown in Ta-
bles I and II. Strain gauges were used to measure and verify the
calculated values.

B. Strain Gauges

In a collaborative effort 14 coils were wound and cured at
FNAL and reacted and potted at LBNL (4 each for TQS and
TQC, and 2 spares). The TQS01 coils were instrumented with
voltage taps and strain gauges glued to layer 1 island (Fig. 4).
Two gauges were located on the island center to measure
azimuthal and axial strain and a single axial gauge was placed
near the lead end. The gauges where thermally compensated

TABLE I
TQS01 MAGNET PARAMETERS

TABLE II
TQS01 STRESS-STRAIN—CALCULATIONS

Fig. 4. Strain gauges near the magnet center and lead-end (top), the gap be-
tween island sections and center gauges (bottom).

by gauges mounted on stress-free elements. Fully compensated
strain gauges were also used on the shell and the axial tie rods.
Measured strain “ ” in two principal directions “z, ” (and no
shear) was converted into stress “ ” using the relationships
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Fig. 5. Magnet training and expected “short-sample”.

below with the Modulus, and Poisson ratio for bronze (islands)
and aluminum (shell):

III. ASSEMBLY AND COOL-DOWN

The magnet was assembled from two subassemblies [10]: a
coil pack of four coils held together by four adjustable load pads
to ensure uniformity and a structure pack of four iron yokes sep-
arated temporarily by gap-keys and held by an outer aluminum
shell. During final assembly the gap-keys were removed and in-
terference keys inserted between pads and yokes using pressur-
ized bladders. The coils were pre-stressed azimuthally and ax-
ially. While holding the coils snuggly within the structure, an
axial end force was applied (using a piston) to the coil ends and
tensioning the four tie-rods to 40 MPa. Azimuthal pre-stress was
then applied using keys and bladders. The final coils pre-stress
was 40 MPa azimuthally and 23 MPa axially (Table II).

The operational pre-stress was reached during cool-down.
Differences in the thermal contraction properties between alu-
minum and iron continued to increase pre-compression in the
coils. At 4.4 K the measured shell tensile stress increased to 150
MPa azimuthally and 140 MPa axially and the rod axial stress
increased to 110 MPa. Measured stresses in the coil islands were

180 MPa azimuthally (compression) and 25 MPa axially (ten-
sion), partially confirming ANSYS calculations regarding prop-
erty differences and friction factors between the coil and its sup-
porting structure.

IV. TEST RESULTS

A. Quench Performance

The magnet first quench was at 80% of short sample (176
T/m) and trained to 190 T/m (Fig. 5) in a dozen quenches. Most
quenches started in a single coil (#6) and at the same location
in layer 1 straight section near the layer 1 to layer 2 ramp. None
of the quenches (except one) started in the ends (the field on
the conductor is the same in the straight section and the end).
Additional test results can be found in [11].

Fig. 6. Measured strain from cool-down to warm up.

Fig. 7. Measured stress from cool-down to warm up.

B. Measured Strain

Measured strain-stress from cool-down to warm-up is shown
in Figs. 6–7. At 75% of the maximum Lorentz force the island
compressive azimuthal stress was reduced to 30 MPa (a de-
crease of 150 MPa) and at the same time the island tensile axial
stress increased from 30 MPa to almost 90 MPa. The overall
strain results were within expectations; however future refine-
ment to the ANSYS model may be required by revising fric-
tion coefficients. Fig. 8 shows measured changes of stress in the
island during excitation. Small changes in stress over several
quenches are evidenced by “ratcheting”.

V. POST ANALYSIS

A. Island Gaps

A post-test visual inspection of the fiberglass-reinforced
epoxy in the gap between island sections revealed discoloring
or “crazing”—typical of high tension. A post structural anal-
ysis, that included island sectional gaps, showed a significant
increase in axial tensile stress especially in the conductor turn
near the gap. Plots of the axial stress along the coil-island
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Fig. 8. Measured change in stress during several excitations. The change in
slope corresponds to a ramp rate change from 50 A/s to 20 A/s.

Fig. 9. Calculated axial stress showing a dips in the island gaps.

Fig. 10. Calculated axial stress in turn 1 near the island peaking across the
island gaps.

interface are shown in Figs. 9–10 (with zero at the magnet
center and moving to its end).

The tensile axial stress in the island near the magnet center
increases with cool-down and excitations, but tends to decrease
towards the magnet end. The coil axial stress (turn 1 around
the island) more then doubles near the center island gap (at 121
mm). The localized high tensile strain in the coil near the island
gap may be the reason why the magnet did not reach its expected
short sample. The increase in tensile stress of the coil correlates
well with the lower thermal expansion of the iron yoke. Friction
between the coil and the yoke prevents the coil from contracting
axially thus placing the coil in tensile stress. The island, acting
as a structural rib within the coil, protects the coil as long as its
interface with the coil can sustain axial tensile shear. One way
to reduce tension in the island and prevent conductor strain at
the gaps is to replace the bronze-islands with titanium-islands.
Analysis confirms that with Ti islands, the island-gaps remain
closed even after cool-down and the coil remains protected.

VI. CONCLUSIONS

Design and test results of TQS01 are presented. The magnet
started training at 80% of short sample and achieved 87% in
a dozen quenches. Most quench locations were confined to a
local spot in coil #6 near the gap in the pole. Except for one
occurrence there were no quenches in the magnet ends. A high
axial tensile stress was measured in the island in agreement with
analysis. We assume that axial stress in the coil near the gaps
was the main reason for the 13% reduction in current. Replacing
the bronze islands with titanium should improve magnet perfor-
mance.
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