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The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely
connected) to the Twiss and dispersion functions 3, a, 7, and 7’. It parametrizes the rate of change of
total angle with respect to synchrotron amplitude for grazing particles, which just touch the surface of an
aperture when their synchrotron and betatron oscillations are simultaneously (in time) at their extreme
displacements. The grazing function can be important at collimators with limited acceptance angles. For
example, it is important in both modes of crystal collimation operation—in channeling and in volume
reflection. The grazing function is independent of the collimator type—crystal or amorphous—but can
depend strongly on its azimuthal location. The rigorous synchrobetatron condition g = 0 is solved, by
invoking the close connection between the grazing function and the slope of the normalized dispersion.
Propagation of the grazing function is described, through drifts, dipoles, and quadrupoles. Analytic
expressions are developed for g in perfectly matched periodic FODO cells, and in the presence of 8 or
error waves. These analytic approximations are shown to be, in general, in good agreement with realistic
numerical examples. The grazing function is shown to scale linearly with FODO cell bend angle, but to be
independent of FODO cell length. The ideal value is g = 0 at the collimator, but finite nonzero values are
acceptable. Practically achievable grazing functions are described and evaluated, for both amorphous and

crystal primary collimators, at RHIC, the SPS (UA9), the Tevatron (T-980), and the LHC.
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I. INTRODUCTION

The impact parameter of a particle striking an aper-
ture—the displacement of the particle relative to the edge
of the aperture—is important in the general discussion of
particle losses. For example, if a proton has an insuffi-
ciently large impact parameter when it strikes the leading
edge of an amorphous collimator that is typically of order
I m long, there is a significant probability that it will
escape back into the halo of the beam via multiple scatter-
ing. In this case it is necessary to accurately model the
realistic distribution of impact parameters, if the collima-
tion efficiency and loss maps are to be accurately predicted
or explained. The impact angle is also important. For
example, if a proton strikes a relatively very short crystal
primary collimator that is of order 5 mm long, and which is
oriented for channeling or for volume reflection, then the
impact angle must lie within a limited angular acceptance
if collimation is to be efficient. Here, too, a realistic
distribution of impact angles is important if a particular
case is under quantitative study.

Diffusion mechanisms play a crucial role in determining
the impact displacement and impact angle distributions,
both in reality and in simulation—always assuming that
injection transients have died down. It is conventional to
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assume—or to assert—that slow heating in transverse and/
or in longitudinal phase space causes the particle ampli-
tudes to increase slowly, so that eventually the aperture is
exceeded. The rate of heating (and its dependence on the
amplitudes) has a strong effect on the impact distributions,
and so must be considered carefully and separately for each
particular case.

This paper is concerned with a linear optical mechanism
that broadens the distribution of impact angles in the limit
of no diffusion if the optical dispersion function 1 and/or
its slope 7’ is nonzero. For example, if 7 is significant then
there is an anticorrelation between the betatron amplitude
and the synchrotron amplitude of a particle that just hits the
aperture after an extremely long period of extremely weak
heating—one amplitude tends to be larger when the other
is smaller. Such grazing particles all have a vanishing small
“zero** impact parameter, by definition.

Several other implicit assumptions are made, besides
operating in the limit of no diffusion, in order to make
the analysis as simple and as general as possible. All
transverse and longitudinal motion is assumed to be linear.
There is no coupling between horizontal, vertical, and
longitudinal motion, except through the dispersion func-
tion and its slope. The aperture (collimator) has zero
length, a reasonable approximation for a very short crystal
collimator primary. There may be significant differences if
one or more of these assumptions is removed—allowing
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linear coupling and nonlinear distortions, for example—
but their consideration is beyond the scope of this paper.

A. The linear formalism for grazing

The total horizontal displacement x; of a particle as it
passes a collimator is the sum of its betatron and synchro-
tron displacements,

xXr = xg + xg, (H

where the betatron displacement and angle oscillate ac-
cording to

xp = a,sin(g,) @)

%=%mmmwamwm 3)

Here 8 and « are horizontal Twiss functions at the colli-
mator, a, is the betatron amplitude, and the betatron phase
advances with turn number ¢ according to

d)x(t) =270t + ¢y 4

Similarly, the synchrotron displacement and angle are
Xy =mé (%)
xi=n's, (6)

where 8 = Ap/p is the relative momentum offset, which
performs synchrotron oscillations according to

8 = agsin[¢(1)] (7

= a,sin2wQ,t + dy). (8)

Here 1 and 7’ (dispersion and its slope) are optical quan-
tities at the collimator, complementing 8 and «. The total
angle x/. of a particle is thus written in general as

Xy = %[cos(d)x) — asin(¢,)] + n'agsin(ey).  (9)

The betatron and synchrotron amplitudes a, and a, vary
with time if any diffusion mechanisms are present. Here, in
the limit of zero diffusion, we assume that the typical
fractional change in a, or ag is very much less than one
in one betatron or synchrotron period. After an extremely
long time these amplitudes will have evolved so that the
aperture can only just be touched. Such a grazing particle
has a vanishing small impact parameter. It only just touches
the edge of a collimator displaced by x,. when its betatron
and synchrotron displacements are simultaneously in time
at their extrema—either maxima or minima—such that

a, + |nla;, = |x.|. (10)

This equation correlates the betatron and synchrotron am-
plitudes of the set of grazing particles, since it is trivially
rewritten as

a, = x| = Inla;. (11)

Simultaneous betatron and synchrotron oscillation extrema
are achieved on turn number ¢ when the phases are

¢.(1) = sgn(x.) /2 12)

¢,(1) = sgn(x)sgn(n) /2, (13)

where the possibilities of negative collimator displacement

x. and negative dispersion m are explicitly taken into
account.

B. The grazing function, g
The grazing angle—the total angle of a grazing parti-

cle—is found by substituting these phases into Eq. (9) and
by using Eq. (11) to eliminate a. It is

X = =2 x + sgnlx,) Sgn(n)(gn + n’)as- (14)
B B

Thus the grazing angle depends linearly on the synchrotron

amplitude a, according to

Xp = =g sl sgn(mga, (19
where the differential of the grazing angle with respect to
synchrotron amplitude is

/
dxy; _

"5 = sen(x) sen(n)g. (16
aS

The dimensionless optical grazing function g that enters
these equations is defined as

g= (%n + 77’)- (17)

Inspection confirms it to be the slope of the normalized
dispersion function scaled by the square root of 3,

g =B, (18)
where the normalized dispersion is
1 (19)

nN:\/E

C. A rigorous synchrobetatron condition on g, and its
trivial solutions

Any linear dependence of the grazing angle on the
synchrotron amplitude is undesirable, since it may cause
particles with some synchrotron amplitudes to fall outside
the limited angular acceptance of a collimator. The rigor-
ous synchrobetatron condition for constant grazing angle is

g =+/Bny=0. (20)

This is a condition on the optics, independent of the
emittance and the energy spread of the beam. Since S is

114001-2



GRAZING FUNCTION g AND COLLIMATION ANGULAR ...

Phys. Rev. ST Accel. Beams 12, 114001 (2009)

positive definite, a collimator is ideally placed at a location
where normalized dispersion is at a local maximum or
minimum. This condition

ny =0 21

has already been noted in the literature [1-4]. For example,
Bryant and Klein [1] state: When the normalized disper-
sion has its peak at the primary collimator, all momenta are
treated equally [... giving ...] the collimation condition

n_ 4« (22)

7 B
which is almost equivalent to Eq. (20) (except for the factor
of /B). Two particular trivial solutions to the rigorous
condition

g=Sm+n' =0 (23)
B
are immediately obvious: (i) n = n’ = 0: anywhere in a
dispersion-free straight; (ii) « = 1’ = 0: simultaneous ex-
trema of B and 7, such as (logically) in the middle of a
quadrupole at the boundary of a matched half cell.

General solutions to the rigorous condition can be found
at more practical locations in magnet-free straights which
are not dispersion free. Further, it is sufficient for g to be
“small enough”—complete rigor is not required.

The following sections of this paper go beyond previous
work by recognizing that the behavior of g is worth study-
ing in its own right, in much the same ways that the optical
functions B and 7 are studied. The propagation of g
through a magnetic lattice is presented next, followed by
quantitative discussions of some semiabstract and realistic
scenarios, such as the importance of error waves that
perturb otherwise perfectly matched periodic optics.

II. GRAZING FUNCTION PROPAGATION

The grazing function is closely related to standard opti-
cal functions. Different but equivalent convenient forms
include

ol — 1’_77_1”):</_77_b’): (i_z’)
g=bny b(b B2 Ui 3 "n )
(24)

where for simplicity

b=4/B. (25)

In all lattice configurations g is readily derived from the
optical functions that are numerically generated, element
by element, by an optics analysis program such as MAD.
This section goes on to consider grazing function propa-
gation in cases of instructive interest, including generic
periodic matched optics, dispersion waves, and beta waves.
FODO cells are simple examples of particular interest,
instructive in terms of approximate quantification and scal-

ing. First, however, some basic intuition is achieved by
studying propagation through thin (and short) dipoles and
quadrupoles.

A. Propagation through thin dipoles and quadrupoles

The differential equations describing the propagation of
dispersion and the horizontal beta function are quite simi-
lar to each other:

0!+ Kn =+ (26)
p

b" + Kb = b3 27)

Here K is the geometric strength of the quadrupole field,
while p is the bending radius of the dipole field. The
changes in b’ and 7' across a thin dipole of bend angle
A are

An' = A6 (28)

Ab' =0 (29)

while » and 7 themselves do not change, so that the
grazing function has a step of the same size and sign as
the bend angle, since

!
Ag = (An’ - %) — A6 (30)

Similarly, the changes across a thin quadrupole of inte-
grated strength A(KL) are

An' = —A(KL)7n 31D

Ab' = —A(KL)b (32)

showing that the grazing function is unchanged across a
thin quadrupole, since

/ /
Ag = n(A—" - ATZ’) -0 (33)
7

The top plot in Fig. 1 confirms such propagation of g
through thin dipoles and quadrupoles, plotting values of
g that were generated by a simple script that reads standard
output from an optics analysis code. The bottom plot shows
a more realistic situation in which the vanishingly thin
magnets have become merely short, while retaining the
same integrated strength. In both cases the magnets are
arranged in a FODO cell of 50 m total length, with optical
functions that obey periodic boundary conditions.

B. Propagation through multiple lattice cells
with dispersion waves

Consider a general lattice cell (not necessarily FODO)
that is repeated as the lattice is traversed. The optics are
matched if the dispersion and beta functions obey periodic
boundary conditions (PBC) at the end of each cell. The
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FIG. 1. The grazing function in a matched FODO cell with
thin quads and dipoles (top), and partially filled with short quads
and dipoles (bottom). In both cases the half cell is L =25 m
long, with a phase advance of 90 degrees per full cell in both
planes, and with a bend angle of # = 77/50 radians per half cell.

actual optics deviate from the matched values—either
deliberately or accidentally—by the superposition of dis-
persion and/or beta waves. Thus,

n=np+ Ny (34)

B = Bpr+ Bw (35)

where subscripts P and W denote periodic and wave,
respectively. First, consider the case in which there are
only dispersion waves (so that By = 0), before returning
to consider the opposite case, in which there are only beta
waves.

The periodic dispersion is found by solving the differ-
ential equation

I
Ky = (36)

with PBC, while the dispersion wave obeys

Ny + Knw =0 (37)

with no boundary conditions. Equation (37) is analogous to
the equation for free horizontal betatron oscillations

X"+ Kx=0 (38)

indicating that the exact solution for dispersion waves is

Nw = Cl,,]\/ECOS(d) + ¢77)) (39)

where the constants a,, and ¢,, are the amplitude and phase
of the dispersion wave.
The exact normalized dispersion in the absence of a beta

wave (8 = Bp) is
Ny = Nnp T aycos(éd + ¢,), (40)

where it is convenient to introduce the periodic normalized
dispersion

_ TMp (41)

MNP = \/B_
The dependence of the grazing function g(¢) on the dis-
persion wave amplitude and phase constants is found by
converting the differentiation with respect to s, to differ-
entiation with respect to ¢, through

dny d¢ dny 1 dny
= —_—= —_— = — 42
g =B~ Jﬁdsd¢ Fdp @
to give exactly
Ay

8= 8p— \/E Sil’l((/) + ¢17)’ (43)

where the periodic grazing function is

_ 1 dnyp
8p = =

Br dd

(44)

&I

1. The periodic grazing function, gp(c)

There is a tendency for the periodic normalized disper-
sion Myp to be approximately constant. (This is discussed
further, below, in the particular case of periodic FODO
cells.) Insofar as dyyp/d¢ = 0, then the periodic grazing
function gp(¢) tends to be small. In the general case of a
repetitive cell, without making any assumption about the
behavior of the periodic normalized dispersion,

&r(#) = ay, sin[nzw(%) fou] 69)

where ¢ is the period of the basic cell.

Figure 2 shows 360 degrees of phase advance through
matched periodic optics in a set of repetitive FODO cells,
each with a total phase advance of 90 degrees, so that

b =2m/4 (46)

The beginning of the lattice segment, at ¢ = 0, is chosen
to be at the center of a horizontally focusing quadrupole, so
that
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FIG. 2. The matched periodic grazing function gp in four
FODO cells, with a bend angle of 8 = 77/50 per half cell of
length L = 25 m, and a total phase advance of 360 degrees in
both planes. The grazing function is dominated by the 4¢
harmonic, with a maximum value of 0.0268 that is in good
agreement with the thin quadrupole prediction of 0.0260.

$en =0 (47)
and, simply
gp = D g, sin(4ne). (48)

The bottom plot in Fig. 2 confirms that the fourth harmonic
dominates gp, and that there are no harmonics except
4¢, 8¢, 12¢, ... etc. Lower (and potentially stronger) har-
monics enter only when dispersion waves or beta waves are
present.

2. Dispersion waves, a, # 0

The exact dependence of the grazing function on phase
¢ in the presence of dispersion waves is found by writing
Eq. (43) more fully, as

sin(¢p + ¢ ) .
Bp(p)

Figure 3 shows what happens when a 100% dispersion
wave, with amplitude and phase constants

g(¢) = gp(¢) — a, (49)
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FIG. 3. The grazing function in the presence of a 100% dis-
persion wave, dominated by the 1¢ harmonic and modulated by
1/4/B, with a maximum g value of 0.115 that is 4 times the
maximum in the matched case. The thin quadrupole prediction
of 0.0498 at s = 50 m agrees well with the actual value of
0.0508.

”IP(O)
= 50
“ = B0 0
b, =, 51)

is added to the case of repeated FODO cells already
illustrated in Fig. 2. In this case

1p(0)  sin(4)
VBp(0) vBp(d)

The bottom plot in Fig. 3 confirms that the first harmonic of
¢ dominates the behavior of g with 100% dispersion
waves, modulated by the factor 4/8p(¢) in the denomina-
tor of Eq. (52). Fourth and eighth order harmonics (etc.) are
also present, through the gp(¢) term.

g(¢) = gp(o) + (52)

C. Propagation through periodic optics with betatron
waves

The total B function in the presence of a beta wave of
amplitude ag is given (accurate only 7o first order in a
small amplitude ag < 1) by
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B =~ Bp{l + agcos[2(¢ + ¢p)]}, (53)

where Bp is the periodic matched solution and ¢ is the
phase of the wave. In the absence of dispersion waves (1 =
7p), the normalized dispersion is therefore

{1 +agcos[2(¢p + pp)]} !/

or, after expandmg the term in curly brackets to first order
ina
B>

Ny~ nNPI:l - afﬂ cos[2(¢ + ¢ﬁ)]]- (55)

The total grazing function is given (to first order in ag) by
1

(¢) = gp(d) —
g(p) = gp(d ZW

d
%{TINP(Q{’) ~cos[2(¢ + dp)ll.  (56)
Using the fact that
dn
y (’;” = gpVBr (57)
then, finally
~ arf[ 1 = LA cos2(6 + 4]
8§~ 8p 2\ B " cos B
MINp - .
+ag——-sin[2(¢p + Ppg)]. (58)
B \/E B
Figure 4 shows what happens when a ““100%”’ beta wave,
with amplitude and phase constants
ag =1 (59)
2¢p = m, (60)

is added to the same matched periodic FODO optics, so
that

B = Bpll — cos(2¢)] (61)

The value of B is halved at ¢ = 0, but doubled at 2¢p = 7
(where s = 50 m), confirming that this equation is not a
very good approximation with large values of ag, of order
1. Nonetheless, taking the approximation in Eq. (58) at
face value, the grazing function becomes

g<¢>~gp(¢>[1+ \/% os(z¢>] Y - sin(29).
(62)

The bottom plot in Fig. 4 confirms the general features of
this approximation. For example, g(0) = 0 [in part because
gp(0) = 0], and the 2nd harmonic of ¢ dominates g with
large beta waves, heavily modulated by the factor of

v/ B(¢) in the denominator. Fourth and higher harmonics

| I I I I
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0 | | | 0
0.12 \ \ \
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g o0
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FIG. 4. The grazing function in the presence of a “100%” beta
wave, dominated by the 2¢ harmonic and modulated by 1/+/8.
The maximum g value of 0.084 is in only fair agreement with the
thin quadrupole prediction of 0.139, due to the breakdown of first
order perturbation theory with such large perturbations.

are also present, through the presence of gp(¢) in the first
term of Eq. (62), although the second term clearly
dominates.

D. Quantitative predictions for periodic FODO cells

A case of particular interest—a series of identical FODO
cells—is amenable to approximate quantification.

1. Matched FODO cell optics

Consider the case when each half cell of length L con-
tains one or more dipoles with a total bend angle of 6,
centered halfway along the half cell, with a thin focusing F
quadrupole at one end and a D quadrupole at the other. The
maximum, minimum, and mid-half-cell beta functions for
the matched periodic case are

Bpr = %(%), Brp = %(%),

8 _L<1+C2)
Mg\ 2c /)

(63)

where
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S=sin(pc/2),  C=cos(pc/2)  (64)

and ¢ is the phase advance per full FODO cell. The
maximum and minimum periodic matched dispersion

functions are
2—8
=10 65
NpD ( X ) (65)

_ 10 (2 + S)
Npr 252 )
so that, although the two extreme normalized dispersions
are close in value,

2+ \ —
e \/_0(253/201/2) S

NpNp = \/_'9< S3/2C1/2)VI+S

nonetheless they differ by a small amount An,. The
plausible approximation

A')”N . S
ﬂN(S) = — T Sln(’ﬂz> (67)

(66)

(where s is the distance from the beginning of the half cell)
ensures that 7, increases by Any across the half cell, and
that n, (and hence g) is zero at s = O and at s = L. This is
illustrated by Fig. 2 and is indicated by Eq. (48) for a
matched periodic cell.

2. Quantitative example of matched FODO cells

The extreme values of 7}, and hence g are expected near
the middle of the half cell, at s = L/2 where B8 = Bpy.
Putting all this together for matched periodic FODO cells
with thin quadrupoles and a phase advance per cell of
90 degrees, sothat C = S =1/ \/5 then the maximum of
the grazing function is predicted to be

7 |Anyl
8pPmax ~ E % VIBPM (68)

7 “HC[(z SVI+S— @2+ SVI=3]

N ATe

-0 (69)
~0.410 (70)
~ 0.0260 (71

with no dependence on the half-cell length L.

Figure 2 confirms that the actual maximum value of gp
occurs close to the mid half cell, with a value of 0.0268 that
is surprisingly close to the value of 0.0260 that is predicted
by Eq. (70) when 6 = 7/50.

3. Dispersion waves

Figure 3 shows the case of the same periodic FODO
cells (with L = 25 m) in the presence of a 100% dispersion

wave, as described by Egs. (50)—(52). The grazing function
is predicted to have a “typical” value of

Zup = Z’Z (72)
2+
~ V2.
(G+7) )

=~ 0.0498 (74)

when ¢ = 7r/2 at s = 50 m, in the middle of an F quad-
rupole, where gp = 0.

The data shown in Fig. 3 have an actual value of g =
0.0508 at s = 50 m, in good agreement with this predic-
tion. The maximum grazing function has a value of 0.115 at
s = 69.8 m, more than twice this typical value, largely due
to the strong modulation effect caused by the variation of

+/Bp(¢) in the denominator of Eq. (52). The maximum
value of g with a 100% dispersion wave is 4 times the value
with perfect matched optics.

4. Beta waves

Figure 4 shows that in the FODO case with no dispersion
wave, but with a “100%”’ beta wave, the maximum value
of the grazing function occurs at s = 75 m in the center of
a D quadrupole, with a value of g, = 0.084.

Equation (62) predicts the maximum grazing function
value when ¢ = 37/4 to be

Zmax =~ (75)

vV BPDBD

if it is naively assumed that ¢» = 37/4 at 75 m. In fact ¢p =
37r/4 at s = 80.6 m, due to the presence of a phase wave in
quadrature with the beta wave. Nonetheless proceeding to
get an order of magnitude estimate for the maximum value,
and crudely approximating that

Bp = Brp (76)
then
TrD
max - 5 71
S =g, 7n
24
= 72 . 7
=) 9

~ (0.139. (79)

This prediction is 65% larger than the actual value. This
discrepancy is not surprising, considering the number of
approximations involved in getting to this point.
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E. Scaling with angle and length in a matched FODO
cell

Numerical testing confirms the prediction of Eq. (69)
that the maximum value of the grazing function scales with
half-cell length L and with half-cell bending angle 6 like

Spmax = 0.427109! (80)

when the phase advance per full cell is 90 degrees in both
planes. There is no dependence on the cell length. A fair
rule of thumb is that

gpPmax ~ 0/2 (81)

These two results apply only to a matched FODO cell. The
grazing function can become much larger in absolute
magnitude when a significant unmatched dispersion or
betatron wave is present, and in non-FODO locations. In
this case Eqgs. (73) and (78) similarly predict that

7
g~—

~L061
B

(82)
with the same scaling.

Finally, insofar as the maximum dispersion function
remains remarkably constant at 7., = 2 m over accel-
erators that span many orders of magnitude of energy E
(and ignoring an order of magnitude range of dipole fields),
then

0~E'? (83)
and so also
g~E'2 (84)

The grazing function tends to decrease with the square root
of the energy.

III. THE GRAZING FUNCTION IN RHIC, SPS,
TEVATRON, AND LHC

Table I shows that primary collimators in four hadron
colliders—RHIC, SPS, Tevatron, and LHC—have nominal
grazing functions in the range from —0.0025 to +0.0036,

TABLE 1.

in the absence of optical errors [5—10]. The rigorous con-
dition g = 0 has not been attained in these realistic (or
proposed) implementations of amorphous and crystal pri-
mary collimators. This is in part because ideal locations
have not been sought, and in part because they are not
available.

Inspection of the pairs of 1’ and g values in Table I
shows that there is a systematically strong cancellation
between the two terms (a/8)n and 7’ that comprise g in
Eq. (17). This reflects the tendency for the normalized
dispersion 7 to remain approximately constant in reason-
ably well-matched optics, so that n§, and hence g are
small.

How small is small enough for the absolute value of the
grazing function? How significant are the nonzero g values
in Table 1?7

A. A relaxed grazing function condition for crystal
primary collimators

A discussion of implementation-specific details of sev-
eral collimation systems is beyond the scope of this paper.
Nonetheless, a general discussion of the ‘‘acceptance
angle” ¢, for protons incident on a crystal primary colli-
mator is possible, even though ¢, depends strongly on
crystal geometry, beam energy, and the mode of opera-
tion—channeling or volume reflection. As a rule of thumb
the crystal acceptance angle is

o, [urad] ~ 4E7'/2 channeling at energy E[TeV] (85)

(86)

~ 100 volume reflection at any energy.

The volume reflection acceptance angle is simply the
crystal bend angle, and so is superficially independent of
particle energy. In contrast, the channeling acceptance
angle decreases with increasing energy. [ Volume reflection
therefore appears to become more favored at higher ener-
gies, although channeling benefits from the reduction of
the grazing function with increasing energy, according to
Eq. (84).]

Nominal optics, grazing functions, and other values at primary collimators in four accelerators. The collimator type is

recorded as either ““A” for amorphous or “C” for crystal. Note that the LHC IR7 location (for betatron cleaning) is almost identical to
the tentatively proposed LHC crystal location. The last column records the grazing angle spread across the rf bucket.

B n 77, 8 E Apucket 0'1,/[7 Ox A')C/TB

Type a [m] [m] [1073]  [1073] [TeV] [1073] [1073] [mm] [urad]

RHIC C -26.5 11550 —0.864 —16.2 3.6 0.10 1.50 0.50 7.36 5.40
SPS (UA9) C —2.21 96.1 -0.880 —19.0 1.2 0.12 1.10 0.40 1.06 1.32
Tevatron (T-980) C —0.425 67.5 1.925 15.0 2.9 0.98 0.45 0.14 0.55 1.31
LHC (IR3) A 1.72 131.2 2.100 -30.1 =25 0.45 0.97 0.31 1.01 2.43
7.0 0.35 0.11 0.26 0.88

LHC (IR7) A 2.06 152.0 0.36 —-5.6 —-0.7 0.45 0.97 0.31 1.09 0.68
7.0 0.35 0.11 0.28 0.25

LHC (crystal) C 1.93 136.1 0.341 —5.6 —-0.8 0.45 0.97 0.31 1.03 0.78
7.0 0.35 0.11 0.26 0.28
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The crystal acceptance angle can be compared with the
grazing angle spread from the center to the edge of the rf
bucket (from synchrotron amplitude a, =0 to a, =
Apucket)- The grazing angle spread across the bucket,

A')C/TB = |g|abucket’ (87)

is especially relevant if a collimator is being used to
intercept beam escaping from the rf bucket. The uncap-
tured beam is a major concern for the Tevatron and the
LHC, because such a beam migrates into the abort gap and
can quench superconducting magnets—or even do irre-
versible damage—during an emergency abort [11]. Abort
gap beam is heated transversely in the Tevatron to large a,
by a time-gated electron lens. The T-980 crystal collima-
tion experiment is being used (in part) to study this beam.
The LHC will probably also transversely heat abort gap
beam.

The grazing angle spread across the bucket is recorded
in the last column of Table I. In general (avoiding scenario-
specific details) it is desirable for this spread to be much
less than the collimator acceptance angle,

Axlp < ). (88)

Thus the relaxed condition on the grazing function for
efficient collimation is
/

Ta_ (89)

Apucket

lgl <

B. How significant are actual g values?

Figure 5 shows how the grazing angle spread across the
rf bucket Ax}, compares with the (approximate) channel-

(prad]

— channeling acceptance (approximate)
X crystal collimator

@
'é[_ A amorphous collimator
3
2
S
=
o
[
~
o
S
@ X
2
g 1F ]
B c A
e X
2
o
o
El
o X
g
S
£
6}
01 ‘ o ‘
0.1 1 10

Proton energy, E [TeV]

FIG. 5. Variation of the grazing angle spread across the rf
bucket as a function of energy for amorphous and crystal
primary collimators according to the data in Table I for RHIC,
SPS, Tevatron, and LHC. The solid line maximum limit follows
the inverse square root rule of thumb given by Eq. (85) for the
primary collimator acceptance angle under crystal channeling.
The grazing angle spreads appear to relatively safe, at least for
nominal design optics without errors.

ing acceptance angle o7, given in Eq. (85), across 2 orders
of magnitude in beam energy E. Both amorphous and
crystal primary collimator locations are shown, with differ-
ent symbols. The grazing function values g lead to total
angular spreads that are ‘“‘safe” in all cases for nominal
optics without errors, but by as little as a factor of 2. As
expected, the grazing angle spread across the rf bucket
decreases (approximately) with the square root of energy
E.

IV. SUMMARY

The grazing function g parametrizes the rate of change
of total angle with synchrotron amplitude for grazing
particles—those that just touch the surface of a collimator
or other aperture when their synchrotron and betatron
oscillations are simultaneously (in time) at their extreme
displacements. The grazing function is a pure optics func-
tion, closely related to the slope of the normalized disper-
sion function. It can depend strongly on the azimuthal
location of the collimator (but does not depend on the
type of collimator). It has an ideal value of g = 0 at the
collimator.

The grazing function is naturally small in well-matched
optics with no (or small) dispersion and betatron waves.
Although g is identically zero across a dispersion-free
straight, it is not in general necessary to make dispersion
(and the dispersion slope) zero at the collimator. Most
important is the need to eliminate significant betatron
and dispersion waves (in design and in error), since they
can increase g by half an order of magnitude.

Insofar as g is nonzero in practical implementations (for
example, due to optics errors or to external design con-
straints), then nonetheless it should be kept small enough
in magnitude so that all particles over the relevant syn-
chrotron amplitude range (for example, across an rf
bucket) remain within the collimator acceptance angle.
This appears to be reasonable to achieve in practice with
crystal collimators, especially when they are operating in
volume reflection mode, but also when in channeling
mode.

Design values for past, present, and future crystal im-
plementations in RHIC, SPS, Tevatron, and LHC suggest
that the nominal realistic values of g are acceptably small,
although they are not negligible. Planning for future crystal
implementations should always include a grazing function
analysis, both in design (making g zero, or small enough)
and in error analysis (ensuring that g cannot become
anomalously large).
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