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Note: This is not intended to be a complete and balanced course on magnet design.

It is more focused on the magnetic design and field quality.
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The Superconductivity
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Magnet Division

Resistivity of Cu as a function First observation of “Superconductivity” by Onnes (1911)
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Mot | A Future Vision of Mass Use of SC
Superconducting | An Environment Friendly High Tech Village

Magnet Division

From: International Superconductivity Technology Center, Japan
http://www.istec.or.jp/ISTEC homepage/index-E.html

Assighment #1.

What is missing (or
hidden) in this picture?

A circular collider that uses superconducting magnets and RF Cavities
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Magnets in Accelerators?

NATIONAL LABORATORY

Superconducting
Magnet Division

Use of superconductors in accelerator magnets generate field much higher
than what can be achieved from the normal conductors.

Two major reasons for using superconducting
| magnets in the accelerators:

Cost advantage

In high energy circular hadron colliders, the
superconducting magnets reduce the size of
a machine. This usually translate in to a
reduction in the overall machine cost.
Superconducting magnets also lower the
power consumption and hence the cost of
operating a high energy machine.

w0l |
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CURRENT DENSITY (Am~2)

CONYENTIONAL
IRON - CORED

o B e '\ | Performance advantage
- In interaction regions, a few high field and
AGNETIC TIELD RS high field quality magnets may significantly
o enhance the luminosity of the machine. In
Courtesy: Martin Wilson this case maghet costs may be large but the

overall returns to experimentalists are high.
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Superconducting

A Typical High Energy Collider Chain

Magnet Division
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and Scrapers
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Points 5? I
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Hall

\ TIP-00761

20 TeV SSC Main Ring

Figure 4.1.1.1-4. Schematic layout of SSC.

Schematic Layout of SSC

Cost Distribution of Major Systems

(Reference SSC Cost: 1990 US $7,837 million)
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BROOKHFATEN Cost of the Main Components in
superconducting | Modern High Energy Hadron Collider

Magnet Division

SSC Project Cost Distribution Collider Ring Magnet Cost Distribution

(Reference SSC Cost: 1990 US $7,837 million) Other Magnets
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Magnet Systems
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The dipole magnet system of the main ring is the cost driver.
But the cost of other magnets and systems is also important!
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BROOKHFATEN Major Accelerator Projects with
Superconducting Superconducting Magnets

Magnet Division

Machine Location Energy Circumference Status
Tevatron Fermilab, USA |900 GeV (p) X 900 GeV (p-) 6.3 km Commisioned: 1983
HERA DESY, Germany |820 GeV (p) X 30 GeV (e) 6.4 km Commisioned: 1990
SSC SSCL, USA 20 TeV (p) X 20 TeV (p) 87 km Cancelled: 1993
UNK THEP, Russia 3 TeVv 21 km Suspended
RHIC BNL, USA 100 GeV/amu X 100 GeV/amu 3.8 km Commisioned: 2000
(proton: 2506eV X 250 GeV)
LHC CERN, Europe |7 TeV (p) X7 TeV (p) 27 km Expected: 2005
Dipoles Quadrupoles
Machine B(T) Aper(mm)| Length(m) | Number |Grad(T/m)[Aper(mm)|Length(m)| Number
Tevatron 4 76.2 6.1 774 76 88.9 1.7 216
HERA 4.68 75 8.8 416 91.2 75 1.9 256
SSC 6.7 50 15 7944 194 40 5.7 1696
UNK 5 70 5.8 2168 70 70 3 322
RHIC 3.5 80 9.7 264 71 80 1.1 276
LHC 8.3 56 14.3 1232 223 56 3.1 386
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O TAS ORI Schematic of Twin Aperture
Superconducting LHC Dipole in Cryostat

Magnet Divisio
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Superconducting (schema']'ic)
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RHIC dipole coldmass during assembly ~ RHIC insertion quad coldmass during assembly
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NATIONAL LABORATORY RHIC DipOle COIdmass

Superconducting

Magnet Division
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MAIN SURPERCONDUCTING
OIS

& | e

WEDGE
I TAPERED KEY
“ AR i _ midplane
]
& | Se TR Scanned and photo-enhanced image of
/ ' a dissected SSC 40 Coil (still in collar).
STAINLESS STEEL PIN Inner and outer stands, wedge and
LAMINATED COLLAR insulation (dark) can be seen. One can
5SC 50 mm dipole collared coil quermlne the qc‘rual position of cable
cross-section in a collared coil (warm).
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Superconducting A Br'ief HiSTor'y

Magnet Division

1908 Heinke Kemerlingh Onnes achieves very low temperature (<4.2 K)
1911  Onnes and Holst observe sudden drop in resistivity to essentially zero

Superconductivity is born |
1914  Persistent current experiments
1933 Meissner-Ochsenfeld effect observed
1935 Fritz and London theory
1950 Ginsburg - Landau theory
1957 BCS Theory
1967 Observation of Flux Tubes in Type Il superconductors
1980 Tevatron: The first accelerator using superconducting magnets
1986 First observation of High Temperature Superconductors
It took ~70 years to get first accelerator from conventional superconductors.

How long will it take for HTS to find a place here? Have patiencel
USPAS Course on Superconducting Accelerator Magnets, January 22-26, 2001 Slide No. 16~ 11/3/2003 3:55 PM Ramesh Gupta, BNL



BROOKHFIVEN o4 o .
Critical Surface of Nb-Ti

Superconducting
Magnet Division

current density

=2-10* A/lmm?

pure titanium
e =0.4K B, =017

pure niobium
Te =9.2K,B.=0.19T

Courtesy: P. Schmuser

temperature magnetic field
Figure 2.11: Sketch of the critical surface of NbTi. Also indicated are the regions where pure

niobium and pure titanium are superconducting. The critical surface has been truncated
in the regime of very low temperatures and fields where only sparse data are available.
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Type I
superconductors
are obviously

| NOT suitable for

high field magnet
applications.
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Another remarkable characteristic of superconductor:

They exclude the field from going through inside.

Meissner and Ochsenfeld (1933)

super -

vacuum
conductor

current

/

1 ZRRS

\}\ Courtesy: Schmuser

i
AL X
Normal Conductor Superconductor _ o
Attenuation of magnetic field and
Courtesy: Wilson shielding currents in Type | superconductors
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“HoM - -~ M
? type | * type II

+ 8

. Bf - B Bcl Bcz - B
Me;ner M;;ne; . ’ Normal phase
phase phase phase
Figure 10: Magnetisation of type I and type II superconductors as a function of field.
Type I: Type IT:
Also known as the soft Also known as the hard Superconductors
Superconductors. Completely exclude flux lines up to Bcl
Completely exclude the flux lines. but then part of the flux enters ftill Bc2
Allow only small field (< 0.1 T). Allow much higher fields.
Not suitable. Examples: NbTi, Nb;Sn
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Figure 12: (a) The phase diagram of a type II superconductor. (b) The upper critical field of
several high-field alloys as a function of temperature.

Conductors that are used in building magnets are Type II superconductors.
Nb-Ti is ductile and has been used in all accelerator magnets used in the machine so far.

Nb;Sn (allows field > 10 T) 1s brittle and requires extra design and magnet construction consideration.

Slide No. 21~ 11/3/2003 3:55 PM



BROOKHFAEN

T AT TR AT AT

NATIONAL LABORATORY

Superconducting
Magnet Division

London Penetration Depth
and Coherence Length

magnetic field

n n n
5 S5 s S
B —  — — DE-——- B ‘ _
[ fluxoid field-free _-super
Ve region voriex
— — 4 current
/
Y
A / )
(a) (b) (c) ==
d>>A L d<<i_ Figure 13: Flux tubes in a type II superconductor.
Figure 14: Attenuation of field (a) in a thick slab and (b) in thin sheet. (c) Subdivision of a
thick slab into alternating layers of normal and superconducting slices.
narmal superconducting material | In Pb  Sn  Nb
phase phase Apfom] | 24 32 =30 32
B £[pm} [360 510 =~ 170 39
N¢
Ginzburg-Landau Parameter
|
! |
i | _
] - x K - }\'L/ g
el
AL
Courtesy: Schmuser z t'y']}E I- k<1 f' \/E
Figure 15: The decay of the magnetic field and the rise of the Cooper pair density at a normal- u f \f
superconductor interface. t}'PE II- K> 1 2 .

» London Penetration Depth tells how field falls

» Coherence Length tells how cooper pairs rise

Nb is type I
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Current Transport in
Bulk Superconductors
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Figure 2.7: (a) Fluxoid pattern in niobium (courtesy U. Essmann). The distance between
adjacent flux tubes is 0.2 um. (b) Scheme of fluxoid motion in a current-carrying type II

superconductor.

Courtesy: Schmuser
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{a) / / (b} (c)

Figure 2.12: Current and field distribution in a slab of hard superconductor according to
the critical-state model. The external field is parallel to the surface. (a) Initial exposition
to a small external field. (b) The penetrating field B,. (c) External field first raised above

By, and then lowered again.
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A high critical current density microstructure in a conventionally processed Nb-T1 microstructure
(UW strand).
Courtesy: P.J. Lee (University of Wisconsin-Madison)
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Superconducting

Instability from Flux Jumping

Magnet Division
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(a) Screening currents induced to flow in a slab by a magnetic field parallel to the slab

surface; (b) Magnetic field pattern across the slab showing the reduction of internal field by

screening currents.
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Flux Jumping

Unstable behaviour shown by all type 2 superconductors when subjected to a
magnetic field

It arises because.

a) magnetic field induces screening currents, flowing at critical density

b) change in screening currents allows flux to move into the superconductor

c) flux motion dissipates energy

d) thermal diffusivity is low, so energy dissipation causes local temperature rise

e) critical current density falls with increasing temperature

f) gotob)

/—o AQ

¢

\ N
Courtesy: Wilson
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Stability Criteria Against Flux Jumping
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AQ heat increases temperature AT and reduces J_ by AJ,

Calculate 1f this creates an unstable (runaway) situation?

B(x)=B,-u,J. (a-x) h

d(x)=Box - u, J, (ax-x*/2) h

Change in flux due to change in J_: Adp(x)= p, AJ (ax-x?/2)h

Additional heat due to flux motion: Aq = jox A ¢(X) J.dx =Mo J, AJ, a%3
To first order AJ_=J AT / (T-T,), thus Aq =, J? a? /[3(T.-T,)] AT

Total heat to raise the temperature: AQ + Aq=C AT

where C is specific heat per unit volume

AQ=CAT-Aq={C-n, J? a%/[3(T-T,))] }AT =C" AT

where C* = {C- u_J? a2 /[3(T.-T,)] } is the effective specific heat. a< \/ ST~ 1)

U J:
3C(T.—To)

U J:

For stability condition, the effective specific heat must be positive.

Similarly determine condition for filament of diameter r. r< 2

This determines the maximum slab thickness “a” for stability \/

The value for NbTi is < 40 u; for safety reasons use ~ 20 .
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Superconducting in SC FilamenTS

Magnet Division

transport
current

']r, +:|c

current and field

(a) free region (b) (c) (d)

Figure 6.1: Schematic view of the persistent currents which are induced in a superconduct-
ing filament by a varying external field. (a) The external field is raised from zero to a value
B, less than the penetrating field B,. (b) A ‘fully-penetrated’ filament, i.e. B > By

(c) Current distribution which results when the external field is first increased from zero
to a value above B, and then decreased again. (d) Same as (b) but with a large transport

t.
curren Courtesy: Schmuser

(d)

injection field

Figure 6.2: The normalized magnetization M /M, of a NbTi filament as a function of the
external field. (i): initial curve, (u): up-ramp branch, (d): down-ramp branch. Also shown
are the current distributions in the filament. The field dependence of J. has been neglected.

USPAS Course on Superconducting Accelerator Magnets, January 22-26, 2001

The above
magnetization creates
persistent current, a
major issue in SC
magnefts.

Persistent current induced magnetization:

2MM = 21,2 v ] d RO,

awm ¢

J. . CRITICAL CURRENT DENSITY

d , FILAMENT DiaMETER
v , VoL.FRACTION oF NbT:

Mg= M/v @
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Superconducting in High Field (Nb3$n MagneTS)

Magnet Division

Persistent current induced magnetization : Measured magnetization (NbTi)

2/&°M = 2/"0 E- v J. A @ a8 ) ! N T * T — T ——r—
awm ¢ . el .
T, ., CRITICAL CURRENT DENSITY ol S
' 21 M =yt (MUP ramp _ pdown rampy’
d , FILAMENT DiaMETER ~enl ,\L :
. \ > /
v , VoL.FRACTION oF NbT: fgjan | —
i e | - :
M. = M/v : : :
MS / @ -ig +; _j:

Problem in Nb,Sn Magnets because 2@ |- T
(a) Jc is higher by several times 38 |-
-4 Ny Courtesy: Ghosh

(b) Filament size is big and gets bigger -
ft tion due to sinteri 50 L. Field (Tesla)
after reaction due to sintering g ~& i L
In Nb3Sn case, the effective filament Fig. of & typical magnetization Loop .

diameter is larger than NbTi by about an
order of magnitude.
Either reduce the effective filament diameter or come up with a
design that minimizes the effect of magnetization in the magnets.
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A Typical Superconducting Cable
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URATELY COMPACTED CABLE WHICH
CALLY 30 TWISTED
O LYR  KMENTARY WIRES

INSOLATION
( OVERLAPPED )

FIBERGLASS / EPOXY INSULATION Filaments in an actual cable
ok -ATh L (Filament size in SSC/RHIC magnets: 6 micron)
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A MONOFILAMENT BILLET CONSISTS OF A SINGLE NIOBIUM-TITANIUM BAR OF ABOUT 15-cm
DIAMETER AND 50 TO 75-cm LONG, WRAPPED WITH NIOBIUM FOIL AND INSERTED INTO A

20-cm DIAMETER THICK-WALLED COPPER CAN. TOP AND BOTTOM END CAPS ARE ATTACHED
BY ELECTRON-BEAM WELDING. THE SEALED CAN IS EVACUATED AND COMPRESSED.

THE MONOFILAMENT BILLET IS HOT-EXTRUDED AT 600-700°C
TO A COMPOSITE ROD APPROXIMATELY 3-5 cm IN DIAMETER.

C) THE EXTRUDED ROD IS DRAWN DOWN IN
MULTIPLE PASSES TO A SMALLER SIZE.

© RESULTING BAR IS COMPACTED TO A HEXAGONAL-SHAPED
CROSS SECTION ABOUT 3.5 mm ACROSS, CUT INTO 50 TO
75-cm LENGTHS, AND CLEANED.

(E) AMULTIFILAMENT BILLET IS NOW FORMED FROM APPROXIMATELY
7,200 HEXAGONAL MONOFILAMENT RODS ( FOR INNER SSC CABLE )
OR 4,200 RODS ( FOR OUTER SSC CABLE ). THE RODS ARE TIGHTLY
PACKED INTO ANOTHER 30-cm DIAMETER THICK-WALLED COPPER
CAN, WITH A CENTER COPPER ISLAND AND FILLER COPPER ADDED
AT THE EDGES TO REDUCE THE VOIDS. THE BILLET GOES THROUGH
THE SAME PROCESS OF COMPACTION, EXTRUSION AND DRAWING AS
DESCRIBED EARLIER, EXCEPT THAT NOW THE WIRE IS DRAWN TO THE
FINAL WIRE SIZE NEEDED FOR CABLE PRODUCTION. DURING THE
DRAWING, THE WIRE IS HEAT TREATED SEVERAL TIMES TO OPTIMIZE
ITS CURRENT-CARRYING CAPACITY. THE WIRE IS TWISTED JUST
BEFORE THE LAST DRAWING STEP.

FINAL MULTIFILAMENTARY WIRE, 0.648 OR 0.808 mm IN
DIAMETER WITH 6 um DIAMETER FILAMENTS. THE
CONDUCTOR FOR THE SSC DIPOLES WILL SUBSEQUENTLY
BE CABLED FROM 30 OR 36 SUCH COMPOSITE NbTi WIRES.

THUS, ONE MULTIFILAMENT BILLET FOR INNER WIRE YIELDS APPROXIMATELY
80,000 METERS OF WIRE, SUFFICIENT FOR ABOUT 2 SSC DIPOLE MAGNETS.
ONE BILLET FOR OUTER WIRE YIELDS ~ 130,000 METERS OF WIRE, AGAIN
SUFFICIENT FOR 2 DIPOLES.
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Superconducting Made Of Many Filamer\'l's

Magnet Division

Filaments not coupled Coupled filaments

A wire composed of
twisted filaments

Slide No. 32 11/3/2003 3:55 PM



BROOKHFVEN

T AT A TY AT

Interstrand Coupling
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Figure 3-7  Multifilamentary Composite [28]

Courtesy: Devred

b) Single Loop

Figure 3-9 Equivalent Circuit for Rutherford-type Cable Figure 3-8 Rutherford-type Cable
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Influence of Interstrand Coupling
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Figure 58.

Courtesy: Devred
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Normal sextupole field (B4)
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Effects of interstrand coupling currents on multipole field coefficients measured as a function of

ramp rate in the central part of a SSC dipole magnet [160]: (a) skew sextupole field coefficient
{43) and (b) normal sextupole field coefficient (B3). The transport-current contribution has been

subtracted from the data.

Ramp rate sensitivity of selected 5-cm-aperture, 15-m-long SSC dipole magnet prototypes:

(a) Type A and (b) Type (b). (The magnets are grouped according to the manufacturer and the

production batch of their inner cable strands.)
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Atomic % Ta
Courtesy: P. Lee (U Of W-M)
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Superconducting
Magnet Division

Cable Measurement Set-up

Courtesy: Ghosh

DIPOLE BORE TUBE

SILICON BRONZE NUTS
5.5, [0P PLAIE

5.5. SIUD
5.5 BOTTOM PLAIE
By ill, -} Bplll,+)
| | ~
Bp! L, thick) —Bp{L,thin)
M

Slide No. 36~ 11/3/2003 3:55 PM



BROOKHFVEN

Nb3Sn Cable in Cu- Channel

Superconducting
Magnet Division

: NEE

30

20 1
LOCALLY DAMAGED CABLE.

n-value:

A good indicator of
the quality of cable

Vs (uV)

V o (/1)

SMOOTH CABLE

Courtesy: Ghosh
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2000 3000 8000
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Temperature Superconductors (HTS)

Magnet Division
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But what really matters is the engineering (overall) current density.
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But what really matters is the engineering current density (J,)!
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Superconducting The Cost Issue

Magnet Division

*In circular machines, the size of the machine is determined by the field in the magnet
(Circumference o< 1/R).

*High field magnets may reduce the overall accelerator system cost (tunnel, facilities, vacuum
system, etc.). Superconducting magnets may also reduce the operating cost as there is no Joule
heating.

*But the superconducting magnets themselves are much more expansive than the conventional
warm magnets. In addition, one must also consider the additional cryogenic costs (both
installation and operational).

*Use superconducting magnets only if there is a substantial savings because they also bring the
complexities (magnet protection, cryogenic system, etc.). In high energy colliders (specially in
hadron colliders), the superconducting magnets tend to minimize the cost of building and
operating the machine.

*However, even when the superconducting magnets are used, the highest attainable field is often
NOT the most cost effective solution.

*Moreover, in very high energy collider and storage ring, one must also consider the synchrotron
radiations. For example, using superconducting magnets is not an option for the proposed Next
Linear collider (NLC). Even in the next generation hadron collider, it is becoming an issue.

In short, for arc magnet, the cost is the driver.
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Superconducting The Cost Issue

Magnet Division

Bulk Magnet Cost:

» Material cost (superconductor, iron, stainless steel, etc.)

 Labor cost
 Associated component cost (quench protection, etc.)

First Magnet Cost:

* R&D cost for developing a new design

In small production, the R&D cost may exceed the material and labor cost.
Example: Specialty magnets for large machines.
Use or adapt existing design to meet requirements.

If a new design 1s needed, the cost optimization strategy should be different in case
of a few magnets as compared to the cost optimization of a large scale production.

* For example don’t worry about minimizing the amount of conductor to save money.
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Superconducting Magnets in Accelerators?

Magnet Division

Show resistivity of Copper
Arnaud 2-16

Show resistivity of LTS and HTS
May be from American Superconductor

Wilson’s J,B chart showing
Conventional magnet and NbTi
and Nb3Sn curve
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BROOKHRVEN Major Accelerator Projects with
Superconducting Superconducting Magnets

Magnet Division

Tevatron (year):
Energy:
Main Dipole Field
HERA
RHIC
LHC

Also SSC (canceled but R&D produced significant development in superconductor and magnet R&D)
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Superconducting of superconducfing (SC) magnets?

Magnet Division

Everywhere in the magnet, the conductor must remain below critical
surface while the field 1s maximized in the magnet aperture

Field must be uniform in magnet aperture
Very uniform
Relative errors (typical): dB/B ~ 104
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Maximizing Field in the Magnet Aperture

Superconducting
Magnet Division

Field on the conductor in single layer RHIC dipole

Most of the conductor stays well below critical surface
B-J-T Curve Grading for higher field:

Put higher current density in conductor that is towards
outer radius and towards midplane
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Superconducting Conductor Gr‘ading

Magnet Division

Field on the conductor in two layer SSC dipole

Most of the conductor stays well below critical surface
2-d B-J Curve Grading for higher field

Show LHC main dipole
and LHC IR Quad for inter-layer grading
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Superconducting
Magnet Division

Magnetic Design & Analysis
Actual Magnets

of

A concise tour of the magnetic design process
e First come up with an overall design
e Then develop a detailed design

Remember : Magnet design 1s an iterative process

Field harmonics in superconducting magnets
e What to expect?
e How to minimize them?
e What is the state of the art?

Analysis of measured field harmonics
e What do they tell us about the magnet construction?

A tool to monitor magnet production
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Superconducting

Magnet Division

Most examples 1n this course comes from RHIC magnet
A matter of convenience as I work there

Also the latest and most documented completed (recently) project

The major project of the day: LHC
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b et Overall Magnetic Design
Superconducting (First cut - O™ order process)

Magnet Division

Coil Aperture

e Usually comes from accelerator physicists

e But also depends on the expected field errors in the magnet
e A feedback between accelerator physicists and magnet
scientists may reduce safety factors in aperture requirements

Design Field
e Higher field magnets make machine smaller

Reduce tunnel and infrastructure cost
But increase magnet cost, complexity and reduce reliability

e Determines the choice of conductor and operating temperature

Find a cost minimum with acceptable reliability.
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Superconducting

Magnet Division

Coil width (first cut) : w ~ 2B,/(u,J,)
J, is the operating current density and not
the current density in conductor (J)

Check B-J-T curve of superconductor
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Superconducting (MOI"C dCTGilS)

Magnet Division

Use computer codes

ROXIE at CERN, etc. (the most modern code)
PAR2DOPT (similar codes at LBL) used in designing RHIC and SSC magnets

Minimize peak (maximum) field on the conductor
Typical value
single layer : 110% of Bo
double layer :
105% in 1nner
85% 1n outer (put higher current density)

Minimize field harmonics
First 2-d (cross section) and then 3-d (ends)
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Superconducting (MOI"C dCTGilS)

Magnet Division

Use computer codes

POISSON, etc. (public domain)
OPERA (commercial)
ROXIE (now require licensing?)

Setup basic model with proper boundary conditions

Usually a quadrant for dipoles with
e field perpendicular on x-axis
e field parallel on y-axis
e infinite boundary condition 1s desired on the other two sides or
extent model sufficiently far away
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Superconducting
Magnet Division

Note: A significant portion of this talk
was given in non-electronic format

Incomplete Talk
Sorry Plastic Slides Not-included
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