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I. INTRODUCTION

The computation of the mechanical stresses in cylindrical magnetic field coils
requires a knowledge of the distribution of forces acting upon the conductor, and a
theory whereby this force pattern may be converted into a stress pattern.

The methods found in the literature are either accurate and cumbersome1 or sim-
plification52s3 that may lead to serious errors.

I1. THEORY OF A SIMPLE COIL

For thick-walled pressure vessels, to which a cylindrical coil may be compared,
there exists a stress theory4 in which it is pointed out that the problem is two-
dimensional if pressures are applied inside and outside In this case the z component
of the stress tensor is zero everywhere. If, however, J X B body forces are intro-
duced, this will, in general, not be the case for an isotropic material. However, a
coil consisting of layers of rectangular wire or of pancakes of metal ribbon is not
isotropic, and since the wire .or the metal ribbons is provided with a thin coating of
plastic insulation, the shear stress between wires or ribbons is negligibly small,
and the compressive stress in the 2z direction will depend only on the boundary con-
ditions.’ If we assume that the axial forces will be taken up by suitable coil forms
repeated at distances small compared to the diameter, we may neglect the entire z com-
ponent of the stress tensor, and the problem reverts to the simpler two-dimensional
case. A differential equation may be derived in a manner analogous to Lamé's original
‘method. We will here follow the standard textbook® treatment except for the introduc-

tion of JgB, body forces and the new boundary conditions with zero inside and outside
pressures.

Figure 1 shows a view of the coil, with details at "a" and "b". Under the in-
fluence of the electromagnetic forces, the circle of radius r in the unstressed state
between inmer radius r; -and outer radius r,, becomes a circle of radius r + u, where
u is the outward displacement of any point, r. Thus u is a function of r, although

1. J.D. Cockeroft, Trans. Roy. Soc. London 227, 317 (1928); also W.F. Giauque,
Rev. Sci. Imstr. 31, 374 (1960).

2. H.P. Furth, M.A. Levine, and R.W. Waniek, Rev. Sci. Instr. 28, 949 (1957).
3. D.B. Montgomery, The Generation of High Magnetic Fields, pp. 70~104 (see p. 80).

4. G. Lame and B.P.E. Clapeyron, Mémoire sur 1'équilibre intérieur des corps solides .

homogenes, Mémoires présentés par divers savants, Vol. 4 (Academie des Sciences,
Paris, 1833).

5. J.P. Den Hartog, Strength of Materials (McGraw-Hill, 1949, and Dover Publ., 1961),
. pp. 140-145.
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numerically very small in comparison to r. All lengths of the circle with original
radius r are increased in the ratio (r + u)/r or 1 + (u/r).- A piece ds of the circle
becomes ds + u ds/r, which means that the tangentisl strain is u/r.

To find the strain in the radial direction, we look at the detail "b" in Fig. 1
showing an element in the undistorted state in full lines, which, after loading, goes
to the dotted-line picture. The location of the inner point is r, and it goes to
r + u, because of the magnetic pressure. The location of the outer point was r + dr
and it goes to t 4+ dr + u + du because u varies with r. Thus the original radial
length of the piece was dr, and its distorted radial lemgth is dr + du = dr(l + du/dr).
Hence the radial strain is du/dr.

We will assume that there are no axial forces acting upen the coil and no shear
forces between layers of the winding. The two strains can then be expressed in terms
of the radial and tangential stresses 8, and S; as followsb:

uo_Llog .
r T F (st usr) R ' D)
du 1 _
ar " E (Sr uSt) . (2)

E is the Young's modulus and | the Poisson's ratio. These are two equations in the
three unknowns u, S¢, and S,. A third equation is found from the equilibrium of an
element dr.vd® shown at "a" in Fig. 1 and enlarged in Fig. 2. The radial force 1 is
Sy-rd® per unit length perpendicular to the paper. The force 2 on top is similar but
both Sy and r are slightly different; thus force 2 is Sy-rd€ + d{(Sp+rdB) and the re~
sultant of 1 and 2 outward is ’

d(rs.)

T
e drd® .

d(Sr'rde) =

The forces 3 and 4 are numerically equal but not quite opposite since the faces

they act upon make an angle d6. Hence their resultant is directed inward and has the
magnitude

FBdB = St drdé .

The fifth force that keeps the element in equilibrium is the electromagnetic
body force JgB, rd@dr acting outward upon the volume element with unit length in the
z direction.

- Equating forces in the radial direction, we find

¥, - F, +J

2 1 Bz rd8dr = F3d6

e

After substituting the appropriate values and dividing by drdB we get

d (I‘Sf)
I + rJeBZ = St . : (3)

6. J.P. Den Hartog, Ref. 5, Eg. (8), p. 75.
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Solving Egs. (1) and (2) for S; and 8., we find:

- —E _ (du 2)
5. = 2 ( ar THT 4 (4)
1 -y .
- —E 2‘51_2) '
St 2 ( T + dr - ()
1 -u

Substitution of Egs. (4) and (5) into Eq. (3) then yields the differential equation:

T2 7 ¥ ar r2 E 87z (6)

The homogeneous solutions of Eg. (6) are r and 1/r. The general solution of
Eq. (6) may therefore be written as

_ B ' :
us=Ar+ =, (7)

where A and B are functions of r that satisf& the first order differential equations:

da 1-4°
Er— = - IE JeBZ > (8)
dB _ _ .2 dA
dr o ar : ().

Integration of Eqs. (8) and (9) gives two integration constants, which are to be
determined by the boundary condition that the radial stress S, is zero at the inside
and outside coil radii. “

For a uniform current density Jg, it is usually sufficient to assume that B,
varies linearly with radius from Bj at the inside radius r;, to a small negative

value B, at the outside radius r,. The radial force may then be written:

JeBZ =g - Br , (10)

where @ and B are constants.

Ja(B.x - BrTr)
o= 8 i"0o o’ i , (11)

po it : (12)
1

7. D.H. Menzel, Fundamental Formulas of Physics (Dover Publ., 1960), p. 35.
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Using Eq (10), we may easily integrate Eqs. (8) and (9) to find .the solutions:

2 C

_1-u ( 11 Lge?)

s - -ty (13)
2 c

N ICH G T R “) ‘

B E T-ut6™ 8P (14)
2, C.r c 2 .3

S ( 1 2 __ = &) :

u E Tro T -wr 3 78 (13
C, @2 +wr ., BG+wr

S, =C -2~ 3  F ) (16)
r

s o 42 a+2pr  BA+ 3D . (a7

e Gt 2 3 8 : |

The constants ¢ and B are Ffound from Egs. (11) and (12), u is Poisson's ratio,
and E is Young's modulus. Note that the radial and tangential stresses, 5, and 5,
do not depend on Young's modulus. The radial displacement u is, however, a function
of Young's modulus.

As mentioned above, the counstants Cj ‘and Gy are found by setting 8y = 0 at the
inside and outside coil radii. This yields:

a(24‘u)(ri + LR + ri) B(B%-u)(ri + r?)

€, = 3, + 1) - g (18)
22 o2+ u) B34 w)
G, = % ( 3(r, + ) 8 ) (19)

ITII. APPLICATION TO SIMPLE COIL

The computation derived above has been applied to the case of a "superconducting
coil.' .In this coil the copper is employed primarily for purposes of thermal stabili-
ty, and it has a cross section large compared to that of the actual superconductor, a
niobium-tin alloy. The ribbon® of which the coil is wound consists of two strips of
copper a few thousandths of an inch thick with the niobium-tin of only a few ten-
thousandths of an inch sandwiched between. Therefore, in the computation the stress
contribution of the niobium-tin may be entirely ignored even though both its Young's
modulus and its ultimate strength are higher than those of copper. For this reason
we shall refer to this type of superconducting coil as the "copper' coil.  The coil
is supported by a metal spool 20~in. i.d. so that the copper has an i.d. equal to
21 in. {xjy = 26.67 cm). The outside diameter of this particular coil was dictated by
the size of a Dewar vessel, 38-in. i.d., and was consequently assumed to be 36-in.
_o.d. (rO = 45,72 cm). The axial dimension of the coil was 4 in., but it formed part
of a coaxial system of coils, and the field values and stresses computed here are all

8. M.G. Benz, G.E. Research & Development Center Report No. 66-C-044 (1966).
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for this coil as part of the coaxial fully-energized system. The coil was known as a-
large size "end" coil, there being one smaller "end" coil beyond it. In all cases
considered here, the central field at the center of the assembly and on the axis was

75 kG. Digital computer field determinations under these conditions gave for the
"copper" coil: Bj = 91 kG, By = ~-18 kG, and J = 9.88 kA/cm?. Taking the Young's mod- '~
ulus of copper as 1.03 X 1012 dyn/cm2 (14.93 ¥ 106 psi) and the Poisson's ratio of
copper as (-= 0.33, we found for the' "copper' coil the tangential tensile stress curve,
so marked in Fig. 3, going from 17.2 x 10 dyn/cm2 (24 000 psi) on the inside of the
coil to 8.04 x 108 dyn/cm2 (11 600 psi) on the outside. The radial compressive stres-
ses are plotted as a negative stress on the lefr in Fig. 3 and the radial motion on

the right in Fig. 3. The maximum compressive stress (1.6 X 108 dyn/cm2 or 2320 psi)
although low for copper, should be considered with regard to trhe insulation used on

the metal ribbon. The radial motion is greatest on the inside (0.0445 cm or 0.0175 in.)
and also the largest of the three systems considered.

IV. APPLICATION TO REINFORCED COIL

Because of the high tangential stress on the inside (24 900 psi) it was decided
to consider other configurations than the 'copper" coil.

The second design considered is referred to as the ''two band" coil. It has an
inner "band", consisting of the '"copper" winding, of 21-in. i.d. and 31-in. o.d.
(ry = 39.37 cm), which carries the current, and a stainless-steel band of 31-in. i.d.
and 36-in. o.d. (ry = 45.72 cm), which carries no current but serves strictly as re-
inforcement. Because of the different location of the magnetizing ampere turns, the
digital computer was again used to_determine the field, and the result was By = 99 kG
and By = -20 kG and J = 14.7 kA/em?. In the mathematical stress-strain treatment of
this combination, the "copper' is handled as before with the exception that at the
outside boundary of the copper the radial stress must equal the radial stress of the
stainless steel. For the stainless steel, Eqs. (11) through (17) may be used provided
‘we set Jg = 0 so = 0 and B = 0. The ratio Egg/Eqy was taken as 2 and ugg = 0.30.
Another condition is that the external radial displacement ug, of the copper must
equal the internal radial motion ugg of the stainless~steel band. The four unknowns
Cleus C2cus C1gg and Cpgg may therefore be found from the four boundary conditions:
Sr = 0 at ry and Ty; Ugy = Ugg and Spey = Srgs at rg,.

Carrying through this procedure leads to the curves marked "two band coil" in
Figs. 3a and 3b. The main surprise is that the improvement is so small, the new
maximum tensile stress in the copper being 14.9 X 108 dyn/cm2 or 21 600 psi. The
maximum compressive stress has more than doubled, 3.6 X 108 dyn/em? or 5210 psi, and
the radial motion has been reduced to a maximum at the inside of the coil of 0.0385 cm
or 0.0151 in. )

»

V. COPPER-STEEL RIBBON COIL
A third attempt was made to reduce the maximum tensile stress in the copper,
while keeping the over-all dimensions the same. This time the coil was considered to
be wound of a combination of copper and stainless-steel ribbons so that in the com-
pound ribbon the area of the copper was twice that of the steel.

Consider this compound or sandwich coil as consisting of a “nevw" material with a
mean Young's modulus expressed as follows:

E =fE + fE
™ cc 878
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and a Poisson's ratio

o = fc”c + fsu’s

where £, is the fraction of the total cross section that is copper, fg is the fraction-
al area for the stainless steel, and E, and Eg the corresponding moduli, ete. This
value of the mean Young's modulus may be rigorously derived for the case where the com-
pound ribbon hangs vertically and is loaded by a weight causing a strain, 0§, in both
copper and stainless steel and tensile stresses, respectively §. and Sg. The material
may even be subjected to a stress, Sy, perpendicular to the ribbon.

According to Eq. (1) with some rearranging:
Sc = ﬁEc + ucSr and SS = 6ES + usSr .

The mean stress may be written as

§ =f8 + £f£8 R

m c s s
or by substitution

Sm = GfCEc + fcucsr + éfSEs + fsussr s
‘or rearranged

Sm = 6(chc + fsES) + (fcuc + fsus) Sr R

and since for the 'new" material we must. have

S
m

6Em + uer s

we conclude

E
m

chc + fSES and o

fc“‘c -+ fsu,s .

The results are shown in the curves marked “sandwich coil". The mean Young's
modulus became 1.37 X 1012 dyn/cm? and the mean Poisson's ratio 0.32, when fc = 2/3
and fg = 1/3. It can be seen in Fig. 3 that the maximum tangential stress in the
copper for the sandwich coil has dropped to 13 X 108 dyn/em?, which is 3/4 of the
17.2 x 108 dyn/em? for the simple copper coil.

Note that the maximum tangential stress in the steel of 26 X 108 dyn/cm2 is

. twice as great as the 13 x 108 dyn/em* value for the copper, which is the same ratio -
of two as for their Young's moduli. This ratio follows from Eg. (1) if we recall

that the maximum stress point occurs at the inside surface of the coil where Sy = 0.
Since the radial motion u is essentidlly the same for the copper and steel in the
ribbon, we then have from Eq. (1) that S;.,/E, = Sggs/Bg, which shows that the ratio
of the maximum tangential stresses in the two materials is in the ratioc of their
Young's moduli. :

A further point is that the total tangential stress S5y at a givem radius is
essentially the same whether the coil is a "simple copper" coil or a "sandwich coil".
For the sandwich coil we have



where Sycy and Spgg are the tangential stresses in the copper and steel, respectively,
and feo and fg are the fractional area cross sections of the copper and steel in the
sandwich ribbon. At the inside coil surface we may substitute Stgg = EgSgeu/Bc in the
above equation, and solve it for Si.,: '

1
Stew TE. ¥ £EBJE. Ot
c s 8 "¢

Since S¢ is the same for the "simple copper" and "sandwich coil', the factor
1/(f, + £4Eg/E;) gives the reduction in maximum stress in the copper of the "sandwich
coil” as compared to the "simple copper' coil. For f, = 2/3, f5 = 1/3 and Eg/E; = 2,
this reduction factor is 3/4, just as the numerical values in Fig. 3 show. Also note
that the maximum reduction occurs in the limit of very little copper (fo — 0) and
nearly all steel (fg - 1), in which case the reduction factor becomes Ec/Eg. Thus
the greatest possibie reduction in the copper tangential stress is 50%, which occurs
when the ribbon is nearly all steel. Note that one-third copper and two-thirds steel
would give a reduction factor of 60%.

VI. CHARTS AND GRAPHS

For the simple coil we have set up a computer program that determines the field
in the center, in the center plane on the inside wall and on the outside, and in
various places inside the winding at the mean radius. From these values the tangential
tensile and the radial compressive stresses are computed. The radial components at
the mean, radius allow us to compute the maximum axial compressive stress in the center.
We are not considering the increased strain caused by the superposition of tangential -
tension and axial compressiom nor what theory of strength to use. Figure 4 in the
original report was a "fold out and fold up" chart in which the central field may be
found from length/i.d. and o.d./i.d. on the left and to the right by means of nomograms
from current density and i.d. and by a final reading on the extreme right. Figure 5
shows other f{ield values expressed in the one read from Fig. &.

Figure 6 is a chart similar to Fig. 4 showing at the extreme right the maximum
tangential tensile stress based on, from left to right, length/i.d., o.d./i.d., cur-
" rent density, and i.d.. :

Figure 7 shows other stresses expressed in the tensile stress read from the chart.

If coils are loosely wound or have very compressible insulation the tensile stress

becomes higher than read in the chart. Figure 8 shows the maximum factor of increase
for the "loose" coil.

In all cases the space factor has been assumed to be unity. Actual current den-
sities, tensile and compressive stresses are higher and may be found by dividing by
the appropriate space factors.

For certain coil shapes of o.d./i.d, ratio larger than two the maximum tensile
stress may occcur at a radius larger than the inside and the compressive stress at
smaller radii disappears. The computer program and the charts take this into account.
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ViI. coxncLuszon®®10

We have derived an -accurate theory for the tangential and radial stresses in-
simple cylindrical coils. To apply this theory, the maximum and minimum values of
B, should be found by means of a computer program. TFrom there on the computation
involves only the determination of two integration constants in the expressions for
the two stresses and the tangential strain.

The theory may also be applied to z coil surrounded by a reinforcing band, but
in this case four constants have to be determined from the boundary conditions.

For a third situation, where the coil is wound of a compound ribbon made up of
two different materials, our theory is adequate provided we use specified mean values
of Young's modulus and Poisson's. ratio,

By means of a computer program charts and graphs were plotted of magnetic fields
in various places and of the three maximum stresses for a large range of shapes and
sizes of coils of the simplest type.

9. Since the origimal publication date of this report (August 1966, Report
No. 68-G-255), the following paper was presented on this subject, which con-
tains further references to recent literature: A.J. Middleton and C.W.
Trowbridge, Proc. 2nd Intern. Conf. Magnet Technology, Oxford, 1967, p. 140.

10. R.W. Kilb and W.F. Westendorp, G.E. Research & Development Center Report
No. 67-C-440 (1967).
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Fig. 1. Cross section of coil considered as a thick-walled
pressure vessel showing stresses (a) and deformation (b).

® |s,rdgrdrs, r do)

Fig. 2. Forces acting on an element. Not shown is the electro-
magnetic force JeBZrder, directed radially outward.
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Fig. 3.
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Bi = 91 kG, By = -18 kG, J = 9.88 kA/cm"; "sandwich coil”
same as copper coil; "two-band coil" ry = 26.67 cm,

T, = 39.37 em, ry = 45.72 cm, By = 99 kG, B, = -20 kG,

J = 14.7 kA/ew?, Egg/E,, = 0.33, ug = 0.3.
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