

Neutrino Factory at BNL, A Special Symposium, May 4, 2001 at BNL

A Compact 20 GeV Muon Storage Ring

The Muon Collider Magnet Working Group:

M. Anerella, A. Ghosh, R. Gupta, M. Harrison, <u>B. Parker</u>, J. Schmalzle, J. Sondericker, E. Willen

Storage Ring Footprint: Arc Cell Scaling

Magnet Design for V Factory

Superconducting Magnet Division

Design Principles and Requirements:

Decay products clear superconducting coils

Compact ring to minimize the environmental impact (the machine is tilted)

➡ Need high field magnets and efficient machine design

Storage ring magnet design (simple racetrack coils with open midplane)

High Field Magnet Design

Magnet Division

Superconducting

Design Issues:

- Must use <u>brittle</u> superconductors Nb₃Sn, HTS
- Large Lorentz forces
- Large energy deposition
- Cold coils, Warm iron
- Need compact cryostat
- Large heat leak

Conventional design (e.g., RHIC magnets)

• Complex 3-d geometry -- not suitable for high fields

Conductor friendly racetrack coil geometry (separate program)

• Suitable for high field magnets with brittle material

Muon Storage Ring Arc Magnet Design Harmonics

Dipole Error Summary*

n	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
1	0	0.2	0.2	0	1	2
2	-1	1	2	0	0.1	0.5
3	0	0.1	0.1	0	0.3	1
4	-1	1	1	0	0.05	0.2
5	0	0.03	0.03	0	0.1	0.5
6	-0.3	0.2	0.1	0	0.03	0.1
7	0	0.03	0.01	0	0.03	0.1
8	-0.1	0.1	0.02	0	0.03	0.1
9	0	0.03	0.01	0	0.03	0.1
10	-0.03	0.02	0.02	0	0.03	0.1

Skew Quadrupole Error Summary*

n	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
1	0	0.2	0.2	0	1	2
2	-0.5	0.5	1	0	1	0.5
3	0	0.1	0.1	2	2	1
4	-0.5	0.5	0.5	0	0.05	0.2
5	0	0.03	0.03	1	1	2
6	0	0.2	0.1	0	0.03	0.1
7	0	0.03	0.01	0.5	0.5	0.3
8	0	0.1	0.05	0	0.03	0.1
9	0	0.03	0.01	0.1	0.03	0.1
10	0	0.02	0.01	0	0.03	0.1

- Coil geometry adjusted so as to give very good body harmonics in both the dipole and skew quadrupole cross sections.
- Coil end harmonics opposite between the neighboring sub-coils for a natural integral cancelation of unwanted harmonics.
- If harmonic goals are relaxed, coil sizes forces etc. could be reduced (beam only has to last for ≈1000 turns).

Estimated errors at a 20 mm reference radius. $\langle b_n \rangle$ and $\langle a_n \rangle$ are the expected means to the normal and skew terms. $d(b_n)$ and $d(a_n)$ are systematic uncertainties arising from design and manufacturing errors, and $\sigma(b_n)$ and $\sigma(a_n)$ are the random uncertainties in those values. Note that n =2 corresponds to a sextupole term.

*Errors given in units, 1 unit = 10^{-4} field deviation.

Superconducting Magnet Division

More Innovations for 3-d Effects

Reverse coils to cancel all field errors in the ends

Ring Layout & Arc Magnet Parameters

Arc Magnet Parameters:

Ring Optics: Arc & Straight Section Summary

126 m production straight section has increased β for reduced beam angular spread and uses normal conducting quadrupoles.

53 m arc is mostly superconducting but has warm sections near each end for collimation. 126 m return straight is used for injection and other machine utility functions. Optics details are TBD.

Arc Optics: Linear Optics and Dispersion Suppression

- Use 60° phase advance, 10 cells.
- Add $k_{dipole} = -1/2\rho^2$ (for decoupling).
- Less than 1 mm Δ does the trick.

Dipole Section

Arc Optics: Skew Sextupoles for Chromaticity Control

Correction for Solenoidal Field Coil End Effects

At subcoil ends there are solenoidal fields which alter the cell tune and introduce coupling between the A-B planes (seen effectively as a rotation of the eigenplanes).

- The rotation can be accurately predicted and like the weak focusing due to the bends can be corrected for with only small coil motions.
- Important to provide the proper arc cell phase advance (cancelation of resonance driving terms and dispersion matching).

Production Straight Optics Requirements

- For smallest uncertainty in v flux have to keep divergence due to optics small (small $\gamma = \{1+\alpha^2\}/\beta$).
- We do this with long central drift.
- Make matching section short.
- But then γ is large & contributes to uncertainty (add extra bends).

200

160

120

80

40

0

0

20

 β in A, B eigenplanes (m)

 β_A

60

Position (m)

40

Muon Storage Ring Injection Layout Schematic

this scenario.

Quadrupole Separator Septum Magnet, QS, made from existing type (same as QF & QD)

Muon Storage Ring Injection Aperture Schematic

Preliminary Particle Tracking Studies

- Tracking studies performed on single arc cell using COSY INFINITY.
- Studies made using original arc cell configuration (e.g. no counter coil).
- · Look at nonlinear fields and end effects.
- Should adjust cell to regain 60° phase (correct for fringe and solenoidal fields).

	No Fringe Field Effe	ects With Fringe F. Effects
Initial approximation	0.166667 (6	60°) N/A
	0.166667 (6	60°)
Thick lens model	0.168422 (+0	0.6°) 0.168040 (+0.5°)
	0.168422 (+	0.6°) 0.166919 (+0.1°)
With solenoids	0.162584 (-	1.5°) 0.162190 (-1.6°)
	0.174157 (+)	2.7°) 0.172703 (+2.2°)

Linear Tunes for the Two Orthogonal Planes

Summary and Some Areas for Future Work

- We now have a 20 GeV muon storage ring lattice:
 - \Diamond with a compact arc that reduces the hill size,
 - \Diamond a long high- β drift (v beam divergence goals),
 - and a straight section that has space for injection and other machine utility functions.
- Need to continue tracking and energy deposition calculations (final field harmonics, aperture, coil and cryostat specifications).
- Work out orbit correction schemes and design of skew sextupole coils.

A Compact 20 GeV Muon Storage Ring

"This could be the discovery of the century. Depending, of course, on how far down it goes."

This could be a machine at Brookhaven. Depending of course, on how far it goes up and down.

Neutrino Factory at BNL, A Special Symposium, May 4, 2001 at BNL

