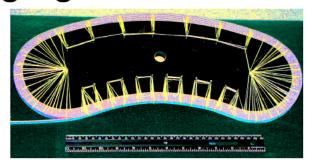


DOE Research and Development Review at BNL, 27–28 February 2002

Neutrino Storage Ring Developments

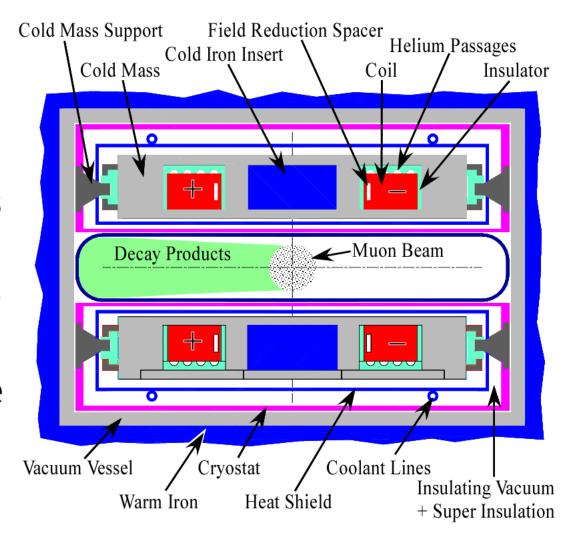
presented by,
Brett Parker, BNL-SMD



Some Muon Storage Ring Design Principles and Requirements.

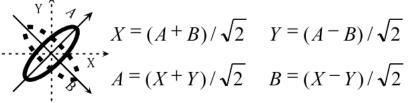
Must keep the ring compact (*tilt* \rightarrow Δh).

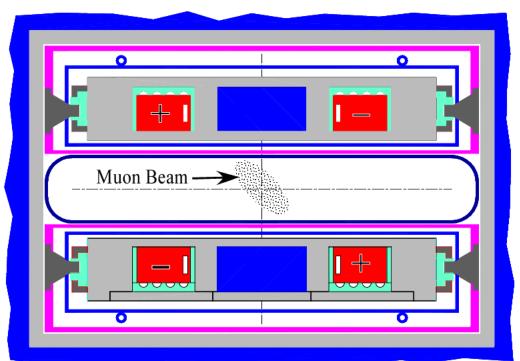
- **◆** For shortest arc use a large guide field.
 - Go beyond NbTi, but then must work with brittle materials (Nb₃Sn or HTS).
 - The arc dipoles have significant sagitta.
 - Flat racetrack coils are conductor friendly.


"Minimize aperture" with short cell length.

- Poor muon ε means keeping β and dispersion low as possible.
- But avoid wasting space with many dipole/quadrupole coil ends.
- ♦ 1/3 beam energy goes into decay electrons.

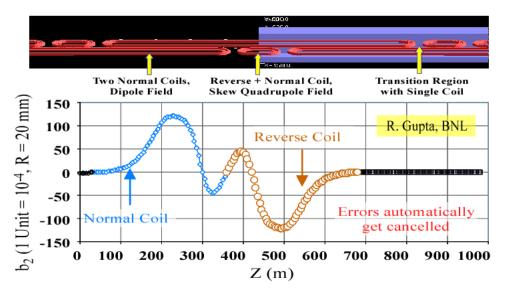
Muon Storage Ring Dipole Magnet Cross Section.


- Has simple racetrack coils and an open midplane.
- The large bend radius allows "react and wind."
- Warm iron yoke minimizes the cold mass.
- The decay products clear the superconducting coils.



Muon Storage Ring Quadrupole Magnet Cross Section (Skew).

- The same construction as dipole.
- Do skew optics for decoupled motion in A—B eigenplanes.
- Follow standard prescription for dispersion matching and chromaticity correction.
- Can however get slightly more acceptance than from upright lattice, $\beta_{eff} = (\beta_A + \beta_B)/2$.


Reverse polarity of one dipole coil to make a skew quadrupole.

Muon Storage Ring Magnet Coil Layout and Harmonic Cancelation.

- Overlap coils for dipole or skew quad.
- ◆ No wasted space at coil ends (transition).
- Automatic cancelation of end harmonics.

For estimated errors at right a 20 mm reference radius is used. $\langle b_n \rangle$ and $\langle a_n \rangle$ are the expected means to the normal and skew terms. $d(b_n)$ and $d(a_n)$ are systematic uncertainties arising from design and manufacturing errors, and $\sigma(b_n)$ and $\sigma(a_n)$ are the random uncertainties in those values. Note that n=2 corresponds to a sextupole term.

Dipole Error Summary*

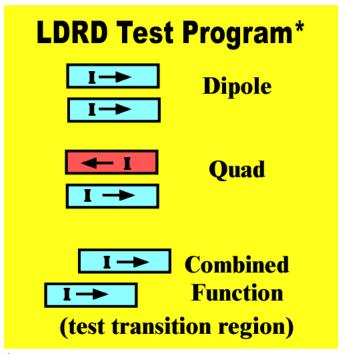
n	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
1	0	0.2	0.2	0	1	2
2	-1	1	2	0	0.1	0.5
3	0	0.1	0.1	0	0.3	1
4	-1	1	1	0	0.05	0.2
5	0	0.03	0.03	0	0.1	0.5
6	-0.3	0.2	0.1	0	0.03	0.1
7	0	0.03	0.01	0	0.03	0.1
8	-0.1	0.1	0.02	0	0.03	0.1
9	0	0.03	0.01	0	0.03	0.1
10	-0.03	0.02	0.02	0	0.03	0.1

Skew Quadrupole Error Summary*

n	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
1	0	0.2	0.2	0	1	2
2	-0.5	0.5	1	0	1	0.5
3	0	0.1	0.1	2	2	1
4	-0.5	0.5	0.5	0	0.05	0.2
5	0	0.03	0.03	1	1	2
6	0	0.2	0.1	0	0.03	0.1
7	0	0.03	0.01	0.5	0.5	0.3
8	0	0.1	0.05	0	0.03	0.1
9	0	0.03	0.01	0.1	0.03	0.1
10	0	0.02	0.01	0	0.03	0.1

^{*}Errors given in units, 1 unit = 10^{-4} field deviation.

Muon Storage Ring Arc Optics Muon Collaboration and Magnet Design Parameters.


- The 163 m total length for ring is compatible with BNL site.
- Arcs are made up from three cryogenic sections (have conventional iron dominated quadrupoles elsewhere).
- Inject into up straight; ∨ down straight points at detector.
- There is no need for ultrahigh beam vacuum (insulating ok).

The Muon Storage Ring Model Magnet Test Program (LDRD).

Want to test practical aspects for making a magnet:

- Make support structure to handle coil forces (heat leak).
- Work through coil winding, handling and the assembly into a coldmass.
- Test in many different configurations (dipole, skew quadrupole and skew combined function).
 - Make Nb₃Sn coil of same size as the muon storage ring magnet small coil.
 - Design and construct cold mass side supports.
 - Estimate heat leak and verify coil performance in all configurations.

*With two coil packs can change polarity and shift to test different magnet configurations.

