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Abstract Introduction

We screened two small-molecule libraries by fluorescence Ribonuclease P (RNase P) is a ribozyme (1) that catalyses the

spectroscopy, biolayer interferometry and X-ray crystallography hydrolysis of the 5" end of all tRNA precursors across all domains

against the P protein subunit of bacterial ribonuclease P as of life, producing a mature tRNA and a 5’ leader sequence. Pre-tRNA3-CCAENd

means to discover novel antibacterial compounds. We detected According to the crystal structure of bacterial RNase P (2), it is

two crystallographic hits: 2-MBX and FTU, which both bind in a formed by a big RNA subunit (110 kDa) with a universally- . c.covic B protein

site relevant for the function of the RNase P holoenzyme. Finally, conserved catalytic site and by a small protein subunit (P protein, Subunit

we detected the novel inhibitor purpurin which binds to the P 14.3 kDa) (Fig. 1), which does not present structural or sequence

protein in the same binding site as that of the pre-tRNA 5’-leader homology with its archaeal and eukaryal counterparts. Because

sequence. of these reasons, we consider the P protein subunit as an
important target for the development of novel wide-spectrum |
antibiotics (3). pre-tRNA Substrate

P protein Subunit
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Figure 2. Functions of the RNase P protein subunit. M= 151.19 Da
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Figure 3. Crystal structure of P protein-2-MBX complex.
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Figure 4. Crystal structure of P protein-FTU complex. FTU
binding site is the exact same as that of fragment 2-MBX;
evidence of the existence of a hot spot for small molecules in
this shallow cavity of the P protein subunit.

Figure 5. Electron density of fragment FTU. Ligand FTU
was detected with the PanNNDa software. PDB accesion
code: 6CQC.

During a Fragment-Based Drug Discovery campaign,

weak-affinity, low-occupancy ligands are expected and Apo Crystal Crystal Soaked with 20 mM purpurin
are missed by conventional crystallographic methods. for 3 months
Because of this reason, we applied the Pan-Dataset Figure 6. Crystal of P protein soaked with purpurin inhibitor.
Density Analysis method (PanDDA) (4), which carries out An all-polyethylenglycol regime for crystallognesis and soaking
a statistical analysis of multiple crystallographic data sets experiments was planned allowing minimal crystal = \ L A
that allows to contrast the electronic density of different perturbation. Mother liquor: PEG-1000, 12%; dilution of B ., — TV
background states and localize regions in the difference compounds: PEG-400, 50%; and cryoprotector solution: PEG- \\ Purpur.n ‘ _°“
map that present a binding event. 1000, 35%. Purpurin was soaked at 20 mM for 3 months. PDBcode: BhIAX \ \ | 3 _‘f‘;\‘\\ 3 A
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Figure 7. Electron density of purpurin inhibitor. Electron

density map 2mFo-DFc at 1 o contour of compound 1,2,4-

| s\ X | Trihydroxyanthraquinone (purpurin) was detected in The

‘( , g, | S - . ¥ s | pp— Spectrum Collection small molecule library. PDB accesion code:
| ; S > _— | —gle Y ' ~~ 6MAX.

Figure 9. Purpurin inhibitor binding mode. The P protein

Figure 8. Purpurin binds in the 5’ leader binding site. The subunit recognizes the purpurin inhibitor through three
inhibitor sterically blocks the interaction of the P protein subunit hydrophylic interactions: GIn28, Lys51 and Arg89; and

' _ ’ three hydrophobic interactions: Val33, Leu35 and Ile87. .
with the 5 pre-tRNA 5’ leader sequence. Conclusions

The strategies developed in this work, as well as the lead
compounds detected will further the knowledge of the

Compound A CompoundB design of novel wide-spectrum antibacterial agents against

RNase P.
Figure 10. Structure-guided hypothesis for the
design of a novel inhibitor by fragment linking
strategy. By linking purpurin motif with FTU or ;
2-MBX, a more efficient inhibitor can be
designed. References
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