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Heterogeneous Systems

e System complexities and design challenges
e Applications and architectures

In-Memory
GPU clusters

In-Memory
Accelerator

» Models and tools
« For application programmers
» For operating systems
e For system architects
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Semi-Analytical Modeling

» Fast functional simulation

or native host execution

« Parallel system interactions

Application

| \SW Co"mpiler |

Static analysis
* Pre-characterization
& back-annotation

e Machine learning
‘E & prediction
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Learning-Based, Predictive Models

e Modeling challenges
* Dynamic effects in modern systems (uArch, memory, OS)
« Hard to capture analytically and statically
» How to provide accuracy w/o detailed, slow simulation?

» Intuition
« Performance and power on two platforms is correlated
« Such correlations are non-trivial
e Can we learn them?

» Predict for target while running natively on host
» Bridge gap between analysis and simulation
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Learning-Based, Predictive Models

* Learning-based analytical cross-platform prediction
(LACross, w/ L. K. John) [IIPP’17]
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Software Models

e Predict on target CPU while running on host CPU
« Using hardware counters on host as features
« Predict target performance and power
« At program phase level

» Instrumentation-based [DAC'16, IJPP’17]
e Compiler-based instrumentation at basic block granularity
« Collect features and train/call model every N basic blocks

» Sampling-based [DATE’17]
» Source-oblivious at binary level using timer interrupts
e Sample alignment during training

ModSim, 8/14/19 © 2019 A. Gerstlauer

Learning Formulation

» Given training set (X;, Y;)
* x; € R% d-dimensional counter feature vector from host
* y;, € R: reference performance/power on target

« Want to find function F(x) = y;
¢ Fundamentally non-linear

» Locally linear approximation F,(x,) at input X,
Ft (xt) = gtT 'xt

» Around neighborhood of x,
* LASSO regression to solve for 6,
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Experimental Setup

e Platforms
e Target: Samsung ARM A9/A15 Exynos
¢ Host: Intel Core i7 / AMD Phenom Il

e Host counters
* Instrumentation-based: 14 / 8 counters
e Sampling-based: 6 counters

e Training set

| Host Counters |

Instructions

Cycles
Total Cache Misses
Total Cache References
Total Branches
Total Branch Misses

e 157-284 programs of ACM-ICPC competition

e Test set

» 7 programs from MiBench and 8 programs from SD-VBS

e 19 programs from SPEC CPU 2006

* 13 Java & Python benchmarks from DaCapo/PyBench
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* 95% per-phase accuracy @ 500 MIPS speed
* Phase granularity of 5,000 basic blocks
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LACross Power Results

e 90% per-phase accuracy @ 600 MIPS speed
« Phase granularity of 20,000 basic blocks
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Instrumentation-Based Speed & Accuracy

e Accuracy & speed vs. phase granularity
« Finer granularity requires more prediction overhead

e But: more & better training data w/ finer granularity
— Phase similarity: number of unique phases decreases linearly

* Runtime also limited by hardware counter support on host
— Multiple runs needed to collect all counters
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Sampling-Based Results

* Speed & accuracy increase with coarser host sampling T
e Better alignment, until lack of training data (T > 500ms)
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» 96% accuracy @ 3 GIPS (T =500 ms)

¢ No instrumentation overhead (6x faster)
— Fewer counters, coarser granularity, but requires more training

» 2x faster than running native on ARM target
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Software Prediction Questions

» Host/target pairs e e
10000 - B W Prediction Error (intel -> AMD)
e ARM from X86’ X86-t0-x86 [ 1 Predicted Cycles on Intel Based on Intel
e From simple to complex?

&
1
&
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@& Prediction Error (AMD -2 Intel) 6.0%

Prediction Error

* Prediction features
* Which counters?
* Other information?

Total Cycles (millions)

» Training set
e Larger granularity requires
larger training set
e Optimal training set? i
» Generate synthetic training
set (Genesys) [SAMOS’16]
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Other Predictive Cross-Platform Models

e GPU performance models (Intel/UC Riverside, P. Brisk)
* GPU-to-GPU prediction using performance counters
e Commercial GPUs to predict pre-silicon hardware

* FPGA high-level synthesis models (UC Riverside, P. Brisk)
» Predict FPGA performance of code regions of interest
¢ Running on host CPU, using hardware counters

* Heterogeneous ISA models for OSs (UCSD, D. Tullsen)
» Predict performance on different CPU cores
» Use prediction to make OS scheduling decisions

* CPU benchmark performance models (Harvard, D. Brooks)
« Predict benchmark performance from CPU specifications
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Hardware Accelerator Models

e Hardware power models
» White / grey / black box [DATE’15 / TODAES'18 / ICCAD’15]
» Operation / block / 1/0O activity from functional simulation
» Predict gate-level power at cycle / block / invocation level

Simulation Signal Transitions _ Activity

eHene Activit
Functional |~ | Annotation g
Model
Model
Synthesis

Gate-Iv
Simulation
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Power Model Synthesis

Decomposition

Learning

(]

» Data-dependent, Fast




Learning Formulation

» Dedicated, domain-specific learning formulations
¢ Structural model decomposition & feature selection
e Advanced, non-linear regression models
» Traditional, not deep learning w/ small training size

Invocation-by-Invocation power model accuracy
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Hardware Modeling Results
e Pipelined 2D-DCT

e Cycle-by-cycle trace * Invocation-by-invocation trace
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e Pipelined HDR weight comp.
* Cycle-by-cycle trace * Invocation-by-invocation trace
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» >97% accuracy @ 1Mcycles/s speed
« 2,000-10,000x faster than gate-level, 100x-500x faster than RTL
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CPU Power Models

e PowerTrain [ISLPED’15]
» Learning-based calibration of library-based models
» Against post-silicon hardware measurements
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e Learn CPU micro-architecture models (on-going)
« At cycle-accurate and component granularity
» From gate-level training
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PowerTrain Results

« Comprehensive & accurate power prediction
« 15-fold cross-validation w/ 4% avg. MPAE
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» General, automatic post-silicon power model calibration
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On-Going Work (w/ L. John, P. Brisk)

» Cross-platform models for heterogeneous system design
» Model accuracy vs. speed, learning formulations
¢ Prediction targets, host/target combinations
 Prediction metrics (reliability, thermal, ...)
* Model interpretability, feature ranking
» Architecture design, programming, runtime/OS mgmt.

» Prediction-enhanced simulation
» Combine statistical sampling with prediction

e Prediction for time series data
» Program phase behavior, runtime management

e Architecture-independent prediction
* Predict from source code or IR features

e~ -
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Summary & Conclusions

» Predictive cross-platform modeling
* Run on a host, predict for a target
« Advanced machine learning to capture correlations
» Combination of simulation (host) & analysis (learning)

* Learning-based performance and power prediction
« CPU-CPU, GPU-GPU, accelerators/FPGAs, ...
« More than 95% accuracy at native host speeds
« Programming, OSs, architecture definition

e Extensions to other domains
» Hybrid simulation and prediction
« Time series data, other metrics and targets
 Architecture-independent prediction
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