Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE |

Faster

ahd Accurater

The Future of Memory-System
Modeling and Simulation

Bruce Jacob (with Ph.D. results of Shang Li)

Keystone Professor
University of Maryland

The Bottom Line

Simulation
Speed

We can
get up here

Trace (€8 via prediction)
Based

Cycle

Accurate
[don’t

actually
go here]

Simulation
Accuracy

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 3

Background

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

3an Row Activate (15ns

Precharge and Data Restore (another 22ns)

mm

TIME > CL=8 BL=38

Cost of access is high; requires significant effort
to amortize this over the (increasingly short) payoff.

Background (‘significant effort)

|
Outgoing 'v

bus request A.

Write X, data
E

i

Write Q, data
Write A, data

L

* Simulation speed: 100X faster

?
Faster! * Error:<20%
Simulation Speed e 10s of cores simulated on 10s of cores
/Sim
Sniper
Graphit

GemS-T

Marss-03
Gem5-03

Accuracy

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 6

Faster?

Easily
Predictable
Result:
Memory-System
Simulation

is now Limiting
Factor

Relative Simulation Time

Relative Simulation Time

Cycle accurate, traditional CPU simulator

1.00 -
0.75 -
0.50 -
0254 ¥ DRAM Time
B CPU Time
0.00
[G { < .« <
&9 NSRS Y ,,)6/ &} Q7 (‘}/ Q / \'Z} 0(0 (,}' \
Q/@/ (,)(’) @Q N (/(// @ (Q (\,b' 6\/ \$® bb‘/ \0((\
NP S & 9 A%
$® o 22 &'O T \’OQ
O ¢ K 40
Faster CPU simulator w/ DRAM simulator
1.00 - .
" DRAM Time
0.75 - B CPUTime
0.50 -
0.25 -
0.00 -
AR G ¢ C L0 X <
(9(’)%/ {\Q/”)é/ (} Q7 &7 O 0 Q/@(Q (}’),
O & N (Y& L@ xS
N N & O @ 9 A% C
$’0 o Q’Q O&O + \’OQ
NP A 40

Trace Simulation:
10M Random requests
10M Stream requests

’ll just leave this here ...

le7/

Bl random-time —l— random-cycles

1200 - .
B stream-time —8— stream-cycles

1000 -

o0

o

o
!

Simulation Time(S)
(@))
o
o

400 -

200 -

O -
DRAMsIim3 DRAMSIimM?2 DrSim USIMM ramulator
DRAM Simulator

Even Faster via Prediction

Statistical DRAM Model
Proposed Approach

Turning DRAM timing simulation into a classification problem

Clock Address OP Class Latency
0 ©x01230000 READ Classification 1dle Recovery 36
12 0©x01230020 READ Row-Hit 22
40 ©x0123003C READ Row-Hit 22

65 OX06340000 WRITE Row-Miss 56

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 9

Refresh
Delay

Latency < Queue Contents
tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

3an Row Activate (15ns)

and Data Restore (another 22ns)

mm

Precharge

ME T = BL =38
lus any
Bank Idle Row P .
Conflict Bank Hit Queueing

Delays

Training: Supervised Learning

Configuration

| Synthetic
Traces

(tRC, tRFC...)

cycle | addr
0 |Ox1F
10 | Ox2E

Training Process

Synthetic Trace:
~7000 Requests

Various access patterns, inter-arrival timings
to cover all kinds of workloads

. Pre-processed Feature Training o Trained

cycle | rank | bank| row
0 1 0 |0x123
10 2 1 |0x234| W

same-row-last | near-ref Class
0 0 idle
idle

Yes

Yes’gNo

O

NO

O

Models (performed the same)

Models: Decision Tree & Random Forest

Decision Tree same-row-last
Y N
ref-after-last num-recent-rank

YN X
N

|ldle |dle row-miss

Instance

Random Forest / f \
'

o« e ' e o ~m
£X A X XX L X L£x £ 2
g N A I 70X 2 N ‘,"' \ S § / “ '," \ 7\ ofer X X

¢ 96 » & 96 0o ¢ 96 o & é o ¢ o6 o @ 2¢ P
Trce-l Tr¢e-2 Tree_—n
Class-X Class-Y Class-X

Majority Voting

Final Class

Results: Way Faster

DRAMSim3 Decision Tree

Decision Tree

(Python) (C++&Python)
D 102 -
)
Q
)
-
O
©
S
S
n
O 101 -
P
©
)
ad
109 -
O N5 08 a8 (> oS &5 of W a0 (B
66/(/ 6 e(\q/\\ébde /(/\\O((\ ((\(, (\6\0 (,(\/ ‘(e’a Q)b‘/(/ \0((\\@
NPT 0 oY O GO) oC
‘0\& (:&c’ dee ‘\O‘ *’6\6

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 12

Results: Way Faster

Classification Accuracy B Average Latancy Accuracy

1.0

But Wait — and Accurater?
A Little Background:

Buss-Interface Memory Memory Memory modules

CPU pipeline
re Unit Controller buss (DIMMs)
' BIU | —_—
118 12 S LLC |! . —

-»». AN F
l
| I
| | i
| | i
| | i
. ' RN
| I
| I
| I

\ J “_
Y

CPU simulators No man’s land Memory simulators

But Wait — and Accurater?
The Real Culprit (took 2 yrs to find):

Request O Request 1 Reqguest 2
Hardware & # ¢
Cycle Accurate > Timeline
; } —>
ZSim 2-phase memory model F;equeStc? F;equeStdl F;eq“eSt d2 CPU to Mem
timeline diagram compared eturne eturne eturme
with real hardware/cycle RequestO0 Requestl Request?2
. _ _ (Program timing ?
accurate model. S sim Phase 1 *I\/Iln Latency ¢ Min Latency¢ Min Latency instrumented here) Mem to CPU
>
Three back-to-back memory * * *
requests (0, I, 2) are issued to Request0 Requestl Request 2 Negles 0 enensy
the memory model. Returned Returned Returned
. Request 1 Latency
First phase of memory access Request0 Requestl Request2
aggressively schedules regs for
&8 Y 9 7Sim Phase 2 Request 2 Latency
performance; second phase } * >
fails to take into account - . - ,
: : equest equest
dependence information. Returned Returned
Request O

Returned

But Wait — and Accurater?

What Programmers WANT:
(and If you can do it = accurate, parallel sims)

if (INSTR.isMemOp) {
if (L1 cache miss (INSTR.dAddr)) {
if (L2 cache miss (INSTR.dAddr)) ({

INSTR.valid = now +
DRAM request (INSTR.dAddr) ;

But Wait — and Accurater?

What Programmers WANT:
(and If you can do it = accurate, parallel sims)

if (INSTR.isMemOp) {
if (L1 cache miss (INSTR.dAddr)) {
if (L2 cache miss (INSTR.dAddr)) ({

INSTR.valid = now +
DRAM request (INSTR.dAddr) ;

} Prediction gives it to them

Bottom Line (scalability)

The Future:

Large parallel simulations
enabled, wherein each CPU
model can have its own
memory-system predictor to
provide estimates of main
memory-system latency.

None of the memory models
need interact to provide their
predictions.

Moreover, the CPU models can
be written in a FAR simpler
way than they are now, making
them faster and less likely to
contain “gotcha” assumptions.

Input Interface

(Configuration, request inputs, address mapper...)

Serial
Region

Parallel
Region

Y Y Y
Controller Controller Controller
Bank Bank Bank
States States States
Scheduler Scheduler Scheduler
Statistics Statistics Statistics
\J

Output Interface

(Aggregated statistics, request callbacks...)

Serial
Region

Shameless
Plug

Call For Participation

WWW.memsys.io Call For Participation

MEMSYS 20118

The International Symposium on Memory Systems «* October 1-4, Washington DC

Keynote Addresses

Hardware Keynote: Steve Wallach
Micron

Software Keynote: Brian Barrett
Amazon

Postamble: J Thomas Pawlowski
Micron

Panelists

WWW.memsys.io

Washington DC
Sep 30 - Oct 3, 2019

Zeshan Chishti, Intel

Zhaoxia ([Summer) Deng, Facebook
Chen Ding, U. Rochester

David Donofrio, Berkeley Lab
Dietmar Fey, FAU Erlangen-Nirnberg
Maya Gokhale, LLNL

Xiaochen Guo, Lehigh U.

Manish Gupta, NVIDIA

Fazal Hameed, TU Dresden
Matthias Jung, Fraunhofer IESE

Kurt Keville, MIT

Hyesoon Kim, Georgia Tech

Scott Lloyd, LLNL

Sally A. McKee, Clemson

Moinuddin Qureshi, Georgia Tech
Petar Radojkovic, BSC

Arun Rodrigues, Sandia National Labs
Robert Voigt, Northrop Grumman
Gwendolyn Voskuilen, Sandia

David T. Wang, Samsung

Vincent Weaver, U. Maine

Norbert Wehn, U. Kaiserslautern
Yuan Xie, UC Santa Barbara

Ke Zhang, Chinese Acad. of Sciences
Xiaodong Zhang, Ohio State

Jishen Zhao. UC San Dieao

Memory-device manufacturing, memory-architecture design, and the use of
memory technologies by application software all profoundly impact today’s and
tomorrow’s computing systems, in terms of their performance, function,
reliability, predictability, power dissipation, and cost. Existing memory
technologies are seen as limiting in terms of power, capacity, and bandwidth.
Emerging memory technologies offer the potential to overcome both technology-
and design-related limitations to answer the requirements of many different
applications. Our goal is to bring together researchers, practitioners, and others
interested in this exciting and rapidly evolving field, to update each other on the
latest state of the art, to exchange ideas, and to discuss future challenges.

Conference Schedule and Venue

The conference will be held at the Gaylord National Resort & Convention Center
at The National Harbor, Maryland. An opening reception will be held on Monday
evening, followed by 2 1/2 days of technical presentations (full days on Tuesday and
Wednesday, a half length technical day on Thursday), Conference Dinner
‘Wednesday evening, and Awards Luncheon Tuesday afternoon. A discounted room
block is still available on the registration site, with only a few rooms left.

Tracks and Topics
The following topics will be presented over the 3-day conference:

* Memory-system design from both hardware and software perspectives
* Memory failure modes and mitigation strategies

* Memory-system resilience, especially at large scale

* Memory and system security issues

* Operating system design for hybrid/nonvolatile memories

* Technologies like flash, DRAM, STT-MRAM, 3DXP, memristors, etc.
* Memory-centric programming models, languages, optimization

* Compute-in-memory and compute-near-memory technologies

* Large-scale data movement: networks, hardware, software, mitigation

* Virtual memory redesign for unifying storage/memory/accelerators

* Algorithmic & software memory-management techniques

* Emerging memory technologies, both hardware and software,
including memory-related blockchain applications

* Interference at the memory level across datacenter applications

* Issues in the design and operation of large-memory machines

* In-memory databases and NoSQL stores

* Post-CMOS scaling efforts and memory technologies to support them,
including cryogenic, neural, quantum, and heterogeneous memories

* The conference focuses on these and other related topics.

Publications & Presentations

All accepted papers will be published in the ACM & IEEE
Digital Libraries. Our primary goal is to showcase
interesting ideas that will spark conversation between
disparate groups—to get applications people, operating
systems people, system architecture people, interconnect
people and circuits people to talk to each other. Thus, we try
to showcase interesting ideas in a format that

will facilitate this. The talks are short, to

encourage participation and discussion. Every
evening we host a panel discussion of invited
speakers, with beer, wine, and hot hors d’oeuvres. ®

— 2018 Conference Sponsors o—

rRambus

NORTHROP GRUMMAN

Micron

Arm (inte) SAMSUNG

u Lawrence Livermore ",‘
—d4 National Laboratory

Sandia National Laboratories

http://www.memsys.io

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 18

T hank You!

Bruce Jacob

blj@umd.edu
www.ece.umd.edu/~blj

http://www.ece.umd.edu/~blj

Not only Faster
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE 19

Backup Slides

Nomenclature

One DRAM device with eight

internal BANKS, each of which
connects to the shared I/0O bus.

One BANK,
four ARRAYS
DRAM Array

One DRAM bank is comprised of many
DRAM ARRAYS, depending on the part’s
configuration. This example shows four
arrays, indicating a x4 part (4 data pins).

Side View DRAMs DIMMs
Edge Connectors / \

Package Pins —i I I I I I

Memory
Controller f
DIMM 0 DIMM 1 DIMM 2
Top View

PCB Bus Traces

Controller

1]

Rank O, Rank 1 One DIMM can have one

or RANK, two RANKSs, or even
Rank 0, Rank 1 more depending on its
or even configuration.

Rank 0/1, Rank 2/3

Number of Accesses at Given Latency Value

1e+08

1e+06 |
10000 F

100 |

Background

179.art FCFS

H

N[

L

.m\ ! l.uu ".M B

200 400 600
Memory Access Latency (ns)

800

e

—h
)

)
(00)

y Valu

Number of Accesses at Given Latenc

—h
)

)
()]

10000 |- |

100}

188.ammp FCFS

| g | nns 1| |

200 400 600
Memory Access Latency (ns)

Features
Extracted

Feature

Values

Description

Intuition

whether the last request

key factor for the most

same-row-last 0/1 that goes to same bank has the same row
recent bank state
(as this one)
whether the last request to the relevancy of the last request
is-last-recent 0/1
same bank added recently (tRC) to the same bank
whether the last request to the relevancy of the last request
is-last-far 0/1
same bank added long ago (tRFC) to the same bank
op 0/1 operation(read /write) for potential R/W scheduling
last-op 0/1 operation of last request to the same bank for potential R/W scheduling
whether there is a refresh since refresh reset the
ref-after-last 0/1
last request to the same bank bank to idle
latency can be really
near-ref 0/1 whether this cycle is near a refresh cycle
high if it’s near a refresh
if there is same row
- number of previous requests with
salme-row-prev nt request then OO0
same row to the same bank
may be possible
number of requests added recently contention/queuing
num-recent-bank int
to the same bank in the bank
number of recent requests added
num-recent-rank int contention
recently to the same rank
number of recent requests added
num-recent-all int contention

recently to all ranks

