
Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Faster 
and Accurater
The Future of Memory-System 
Modeling and Simulation
Bruce Jacob (with Ph.D. results of Shang Li)
Keystone Professor  
University of Maryland

�1

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

The Bottom Line

�2

Simulation
Speed

Simulation
Accuracy

Trace 
Based

HDL 
Based

Cycle  
Accurate 

[don’t
actually

go here]

We can 
get up here

(e.g., via prediction)

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Background

�3

The Root of the Problem

Column

Read

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

CL = 8

Bank

Precharge

Row Activate (15ns)

and Data Restore (another 22ns)

DATA

(on bus)

BL = 8TIME

Cost of access is high; requires significant effort
to amortize this over the (increasingly short) payoff.

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

CPU/$

“Significant Effort”

CPU/$

Outgoing
bus request

MC

read data

read data

Read B

Write X, data

Read Z

Write Q, data

Read A

Write A, data

Read W

Read Z

Read Y
A

C
T

R
D

P
R

E

R
D

R
D

P
R

E

P
R

E

A
C

T

W
R

W
R

A
C

T
R

D

PRE ACTRD
read data

b
e
a
t

c
m

d

Background (‘significant effort’)

�4

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Faster?

�5

CPU Simulators

A. JAMES CLARK SCHOOL OF ENGINEERING 5

Background & Motivation
Performance & Scalability

Simulation Speed

Accuracy

SST-Ariel

Gem5-O3

Graphite
Gem5-Timing

Sniper
ZSim

CMP$im

Marss-O3

• Simulation speed: 100X faster
• Error: < 20%
• 10s of cores simulated on 10s of cores

CPU Simulators

A. JAMES CLARK SCHOOL OF ENGINEERING 5

Background & Motivation
Performance & Scalability

Simulation Speed

Accuracy

SST-Ariel

Gem5-O3

Graphite
Gem5-Timing

Sniper
ZSim

CMP$im

Marss-O3

• Simulation speed: 100X faster
• Error: < 20%
• 10s of cores simulated on 10s of cores

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Faster?

�6

DRAM vs CPU simulator performance

A. JAMES CLARK SCHOOL OF ENGINEERING 4

Background & Motivation
Performance & Scalability

Cycle accurate, traditional CPU simulator

DRAM vs CPU simulator performance

A. JAMES CLARK SCHOOL OF ENGINEERING 6

Background & Motivation
Performance & Scalability

Faster CPU simulator w/ DRAM simulator

Easily  
Predictable 

Result:
Memory-System  

Simulation  
is now Limiting 

Factor

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

I’ll just leave this here …

�7

A. JAMES CLARK SCHOOL OF ENGINEERING 14

Cycle Accurate Memory Simulation
Simulator Comparison

Trace Simulation:
10M Random requests
10M Stream requests

A. JAMES CLARK SCHOOL OF ENGINEERING 14

Cycle Accurate Memory Simulation
Simulator Comparison

Trace Simulation:
10M Random requests
10M Stream requests

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Even Faster via Prediction

�8

Turning DRAM timing simulation into a classification problem

A. JAMES CLARK SCHOOL OF ENGINEERING 37

Statistical DRAM Model
Proposed Approach

Clock Address OP
0 0x01230000 READ
12 0x01230020 READ
40 0x0123003C READ
65 0x06340000 WRITE
...

Class
Idle
Row-Hit
Row-Hit
Row-Miss
...

Latency
36
22
22
56
...

Classification Recovery

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Latency ← Queue Contents

�9

The Root of the Problem

Column

Read

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

CL = 8

Bank

Precharge

Row Activate (15ns)

and Data Restore (another 22ns)

DATA

(on bus)

BL = 8TIME

Cost of access is high; requires significant effort
to amortize this over the (increasingly short) payoff.

Bank 
Conflict

Idle  
Bank

Row  
Hit

…
plus any  
Queueing  
Delays

Refresh  
Delay

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Training Process

�10

A. JAMES CLARK SCHOOL OF ENGINEERING 43

Statistical DRAM Model
Training: Supervised Learning

Synthetic Trace:
~7000 Requests
Various access patterns, inter-arrival timings
to cover all kinds of workloads

A. JAMES CLARK SCHOOL OF ENGINEERING 43

Statistical DRAM Model
Training: Supervised Learning

Synthetic Trace:
~7000 Requests
Various access patterns, inter-arrival timings
to cover all kinds of workloads

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Models (performed the same)

�11Models: Decision Tree & Random Forest

A. JAMES CLARK SCHOOL OF ENGINEERING 44

Statistical DRAM Model
Training

same-row-last

ref-after-last

…

num-recent-rank

Idle Idle

…

row-miss

Decision Tree

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Results: Way Faster

�12

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Results: Way Faster

�12

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

But Wait — and Accurater?
A Little Background:

�13

MEMSYS’18, October 2018, Alexandria, Washington DC, USA Anon.

Figure 1: When CPU and memory simulators are coupled,
the timings of thememory request between the LLC and the
memory controller could be easily overlooked.

better simulation accuracy. Finally, we quantify the LLC to memory
latency for various high-end and emerging platforms and we show
its signi�cant range, between 30ns (POWER8) and 277ns (Knighths
Landing); therefore, it is really important to properly adjust and
validate this parameter in system simulators before any measure-
ments are performed. Overall, we believe that the issues address
in this paper would help researchers of the computer architecture
community to improve main memory system simulation.

The rest of the paper is organized as follows. Section 2 explains
simulation environment and evaluates main memory latency with
a microbenchmark for real and simulated systems. This section also
propose approaches to �x the deviation identi�ed between real and
simulated main memory latency measurements. Section 3 details
the validation of the proposed approaches with SPEC CPU2006
benchmarks , while Section 4 discusses LLC tomainmemory latency
of various high-end and emerging High Performance Computing
(HPC) platforms. Section 5 analyzes the validation procedure of
state-of-the-art system and memory simulators . Finally, Section 6
presents the conclusions of the study.

2 MAIN MEMORY LATENCY EVALUATION
AND SIMULATION ENHANCEMENTS

In this section we detail the methodology used to model a targeted
system into a simulation infrastructure and we describe the mi-
crobenchmarks used to discover the main memory access latency.
The targeted system we aimed to model is an Intel Xeon E5-2670
Sandy Bridge-EP processor [8] operating at 3.0GHz. The main
memory comprises four 4GiB DIMMS devices [21] connected to
the processor using four DDR3-1600 channels. Each processor runs
eight cores where the hyper-threading feature has been disabled
like in most HPC systems [22].

2.1 Simulation environment
The simulator infrastructure we chose to use is an integration of
two simulators: ZSim [20] as CPU simulator and DRAMsim2 as
main memory simulator.

ZSim is a user-level, execution-driven CPU simulatorwidely used
in the computer architecture research community. Developed by
researchers fromMIT and Stanford University, ZSim is designed for
simulation of large-scale systems. However, ZSim was originally de-
veloped to simulate Intel Westmere architecture which is no longer
being used in HPC domain. One of the tasks that we had to perform

Table 1: Cache parameters of the Sandy Bridge EP class pro-
cessor used in the study.

L1-D L2 L3

Size 32 KiB 256 KiB 20MiB
Latency (in CPU cycles) 4 8 28
Cache line size 64 B 64 B 64 B
Set associativity 8-way 8-way 20-way

was to upgrade and validate ZSim for Intel Sandy Bridge processor.
The work to upgrade ZSim consisted in the following steps: First,
we adjusted the simulator by updating the instruction latencies
obtained trough the execution of CPU microbenchmarks [23] in the
real hardware; Second, we improved the micro-operation fusion
and we increased the number of entries in the Reorder Bu�er (ROB)
from 128 (Westmere) to 168 (Sandy Bridge); Third, we con�gured
the cache hierarchy according to the Intel documentation [8] for a
Sandy Bridge EP Class, summarized in Table 1. Finally, we updated
the L3 caching mechanism implementing the hashing function
described in work by Maurice et al. [13].

ZSim is easily integrated with a main memory simulator such
as DRAMsim2 . DRAMsim2 is a cycle-accurate simulator validated
against Verilogmodels formemory devices.We con�gured DRAM-
sim2 following manufactures documentation with speci�c timings
on memory device part [21].

2.2 Memory latency microbenchmark
State-of-the-artmemory benchmarks such as LMbench [15], stream
[14] and Intel’s Memory Latency Checker (imlc) [24] can be used
for main memory latency measurements. However, they are not a
good �t for our study because it is very di�cult to use them in ZSim
simulation. LMbench and stream rely on compiler optimization
and imlc is a binary-only distributed program; Hence, no tailored
analysis nor modi�cation to the code could be made. Therefore, as
none of the open source existent benchmarks was appropriate for
our analysis, we had to design a speci�c microbenchmark to use
for our experiments.

Our microbenchmark is designed to stress the caches and main
memory implementing the concept of pointer chasing. Because the
microbenchmarks are designed to run on top of an Operating Sys-
tem, a C program wraps all functionality outside the microbench-
mark design as memory initialization, metrics collection, and
program cleanup. By doing so, the microarchitectural implications
of running on top of an OS are diminished.

In the microbenchmarks prologue, we allocate a contiguous
section of memory that stores an array of pointers. The elements
on the array are initialized as a circular linked list that follows a
pointer chase pattern, Figure 2 portray an example of such ordering.
Our design goals for the microbenchmarks are summarized as:
(1) Iteratively traverse the whole array; (2) Access di�erent cache
lines for every memory access; (3) The memory accesses have a
random pattern preventing data prefetchers to bring data to any
level of cache.

2

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Conference’17, July 2017, Washington, DC, USA Anon.

(a) DRAM latency and overall latency reported by
Gem5 and ZSim.

(Program timing
instrumented here)Min Latency Min Latency Min Latency

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Hardware &
Cycle Accurate

ZSim Phase 1

ZSim Phase 2

Request 0 Latency

Request 1 Latency

Request 2 Latency

CPU to Mem

Mem to CPU

Timeline

(b) ZSim 2-phase memory model timeline diagram compared with real hard-
ware/cycle accurate model. Three back-to-back memory requests (0, 1, 2) are issued
to the memory model.

Figure 3: Simulator memory latency analysis

main memory backend at all. [17] supports cycle accurate memory
backend, but as we will see soon, it has its issues when integrating
a cycle accurate memory backend.

The problem was �rst discovered by [19], who observed a mem-
ory latency error of about 20ns when they tested a memory latency
benchmark. But [19] did not answer where this 20ns missing la-
tency comes from as was suspecting it came from the cycle accurate
DRAM simulator they were using. We will analyze this situation
and provide a conclusive answer to this question.

To replicate the issue independently, we developed a simpli�ed
version of LMBench(ram_lat we referred in Table 1) that randomly
traverse a huge array, and measure the average latency of each
access. When the array is too large to �t in the cache and most
accesses go to DRAM, the average access latency will include the
DRAM latency. The benchmark inserts time stamps before and
after the memory traversal, and use them to determine the overall
latency of a certain number of memory requests, and divide the
number of requests to obtain average memory latency. This average
memory latency consists of cache latency and DRAM latency, and
thus we use the term overall latency in the following discussion.

Like [19], we ran this benchmark natively on our machine to
obtain “hardware measured” latency(72ns), then ran it in ZSim
along with DRAMSim2 as DRAM backend, and we were able to
reproduce similar results as [19]. That is, the overall latency (43ns)
is 29ns lower than hardware measurement (72ns). To determine
whether this is a ZSim speci�c issue or DRAM simulator issue, we
ran the same benchmark in Gem5 with the same cache and DRAM
parameters, and this time, the overall latency is 78ns, much closer to
our hardware measurement. So we conclude this is a ZSim speci�c
issue not a DRAM simulator issue. We then further looked into the
simulator statistics, and found that the DRAM latency reported by
the DRAM simulator in Gem5 is 55ns, which makes sense as the
overall latency (78ns) should be a combination of DRAM latency
(55ns) and cache latency (23ns). However, in ZSim, the DRAM

latency reported by the DRAM simulator is 73ns, much higher than
overall latency, which makes no sense. Figure 3a visualize these
results. This again con�rms the issue lies within the ZSim memory
model.

The way ZSim memory model works is, it has two phases of
memory models, the �rst phase is an �xed latency model that
assumes a �xed “minimum latency” for all memory events. The
purpose is to simulate instructions as fast as possible, and generate a
trace of memory events. After the memory event trace is generated,
the second phase kicks in and that’s when the cycle accurate DRAM
simulator actually works, the cycle accurate simulation use the
event trace as input and update latency timings associated with
these events.

For instance, Figure 3b demonstrates how ZSim memory model
handles memory requests di�erently from hardware/cycle accurate
models. Suppose there are 3 back-to-back memory requests(each
relies on the �nishing of previous one). In real hardware or a cycle
accurate model, each memory request’s latency may vary and next
request cannot be issued until the previous request is returned. In
ZSim Phase 1, all requests are assumed to be �nished with “mini-
mum latency”, and therefore �nish earlier than they should. Then
in ZSim Phase 2, cycle accurate simulation is performed, more ac-
curate latency timing is produced by cycle accurate simulator and
all 3 requests update their timings. But even if all memory requests
obtain correct timings in Phase 2, unfortunately, when the simu-
lated program, like our benchmark, has instrumenting instructions
such as reading system clock, it will obtain the timing numbers
during Phase 1, which can be substantially smaller. This is why the
overall latency is much smaller than DRAM latency.

So in other words, the “minimum latency” ZSim parameter will
dictate the latency observed by the simulated program. To verify
this claim, we run the same simulation with di�erent “minimum
latency” parameters, and plot them against the benchmark reported

But Wait — and Accurater?
The Real Culprit (took 2 yrs to find):

�14

ZSim 2-phase memory model
timeline diagram compared

with real hardware/cycle
accurate model.

Three back-to-back memory
requests (0, 1, 2) are issued to

the memory model.

First phase of memory access
aggressively schedules reqs for

performance; second phase
fails to take into account
dependence information.  

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

But Wait — and Accurater?
What Programmers WANT:  
(and if you can do it → accurate, parallel sims)

if (INSTR.isMemOp) {
if (L1_cache_miss(INSTR.dAddr)) {

if (L2_cache_miss(INSTR.dAddr)) {
INSTR.valid = now +
 DRAM_request(INSTR.dAddr);

}
}

}

�15

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

But Wait — and Accurater?
What Programmers WANT:  
(and if you can do it → accurate, parallel sims)

if (INSTR.isMemOp) {
if (L1_cache_miss(INSTR.dAddr)) {

if (L2_cache_miss(INSTR.dAddr)) {
INSTR.valid = now +
 DRAM_request(INSTR.dAddr);

}
}

}

�15

Prediction gives it to them

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Bottom Line (scalability)
The Future:

�16

Input Interface
(Configuration, request inputs, address mapper...)

Controller

Bank
States

Scheduler

Statistics

...

Controller

Bank
States

Scheduler

Statistics

...

Controller

Bank
States

Scheduler

Statistics

...

...

Output Interface
(Aggregated statistics, request callbacks...)

Serial
Region

Parallel
Region

Serial
Region

Figure 5.1: Parallel DRAM simulator architecture.

5.1.2 Evaluation

First, we examine the execution speedup of the parallel DRAM simulator over

trace inputs. The trace frontend contributes little overhead to the overall simulation

time. We can also load traces to keep the DRAM simulator busy all the time to

maximize the simulation time spent in the DRAM simulator. Therefore it is the

ideal scenario for testing parallelization speedup.

We run two types of trace, stream and random, for 10 million cycles on a

8-channel HBM configuration. We compare the simulation time of running the

simulation in 1, 2, 4, and 8 threads respectively.

78

Large parallel simulations
enabled, wherein each CPU

model can have its own
memory-system predictor to

provide estimates of main
memory-system latency.

None of the memory models
need interact to provide their

predictions.

Moreover, the CPU models can
be written in a FAR simpler

way than they are now, making
them faster and less likely to

contain “gotcha” assumptions.

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Call For Participation www.memsys.io Call For Participation

The International Symposium on Memory Systems v October 1–4, Washington DC

MEMSYS 2018
Keynote Addresses

Hardware Keynote: Steve Wallach  
 Micron

Software Keynote: Brian Barrett 
 Amazon

Postamble: J Thomas Pawlowski 
 Micron 

Panelists

Keren Bergman, Columbia 
Wendy Elsasser, Arm 
Philip Emma, Systems Technology &
Architecture Consulting  
Michael Healy, IBM 
Adolfy Hoisie, BNL 
Dave Resnick, Consultant 
Jeffrey Vetter, ORNL

Organizers

Bruce Jacob, U. Maryland  
Kathy Smiley, Memory Systems

Rajat Agarwal, Intel  
Abdel-Hameed Badawy, NMSU 
Jonathan Beard, Arm 
Ishwar Bhati, Intel  
Bruce Christenson, Intel  
Zeshan Chishti, Intel  
Zhaoxia (Summer) Deng, Facebook  
Chen Ding, U. Rochester  
David Donofrio, Berkeley Lab  
Dietmar Fey, FAU Erlangen-Nürnberg  
Maya Gokhale, LLNL 
Xiaochen Guo, Lehigh U.  
Manish Gupta, NVIDIA  
Fazal Hameed, TU Dresden 
Matthias Jung, Fraunhofer IESE  
Kurt Keville, MIT 
Hyesoon Kim, Georgia Tech  
Scott Lloyd, LLNL 
Sally A. McKee, Clemson 
Moinuddin Qureshi, Georgia Tech  
Petar Radojkovic, BSC 
Arun Rodrigues, Sandia National Labs 
Robert Voigt, Northrop Grumman 
Gwendolyn Voskuilen, Sandia 
David T. Wang, Samsung  
Vincent Weaver, U. Maine  
Norbert Wehn, U. Kaiserslautern 
Yuan Xie, UC Santa Barbara 
Ke Zhang, Chinese Acad. of Sciences 
Xiaodong Zhang, Ohio State 
Jishen Zhao, UC San Diego

Memory-device manufacturing, memory-architecture design, and the use of
memory technologies by application software all profoundly impact today’s and
tomorrow’s computing systems, in terms of their performance, function,
reliability, predictability, power dissipation, and cost. Existing memory
technologies are seen as limiting in terms of power, capacity, and bandwidth.
Emerging memory technologies offer the potential to overcome both technology-
and design-related limitations to answer the requirements of many different
applications. Our goal is to bring together researchers, practitioners, and others
interested in this exciting and rapidly evolving field, to update each other on the
latest state of the art, to exchange ideas, and to discuss future challenges.

Conference Schedule and Venue
The conference will be held at the Gaylord National Resort & Convention Center
at The National Harbor, Maryland. An opening reception will be held on Monday
evening, followed by 2 1/2 days of technical presentations (full days on Tuesday and
Wednesday, a half length technical day on Thursday), Conference Dinner
Wednesday evening, and Awards Luncheon Tuesday afternoon. A discounted room
block is still available on the registration site, with only a few rooms left.

Tracks and Topics
The following topics will be presented over the 3-day conference:
• Memory-system design from both hardware and software perspectives
• Memory failure modes and mitigation strategies
• Memory-system resilience, especially at large scale
• Memory and system security issues
• Operating system design for hybrid/nonvolatile memories
• Technologies like flash, DRAM, STT-MRAM, 3DXP, memristors, etc.
• Memory-centric programming models, languages, optimization
• Compute-in-memory and compute-near-memory technologies
• Large-scale data movement: networks, hardware, software, mitigation
• Virtual memory redesign for unifying storage/memory/accelerators
• Algorithmic & software memory-management techniques
• Emerging memory technologies, both hardware and software, 

including memory-related blockchain applications
• Interference at the memory level across datacenter applications
• Issues in the design and operation of large-memory machines
• In-memory databases and NoSQL stores
• Post-CMOS scaling efforts and memory technologies to support them,

including cryogenic, neural, quantum, and heterogeneous memories
• The conference focuses on these and other related topics.

Publications & Presentations
All accepted papers will be published in the ACM & IEEE
Digital Libraries. Our primary goal is to showcase
interesting ideas that will spark conversation between
disparate groups—to get applications people, operating
systems people, system architecture people, interconnect
people and circuits people to talk to each other. Thus, we try
to showcase interesting ideas in a format that
will facilitate this. The talks are short, to
encourage participation and discussion. Every
evening we host a panel discussion of invited
speakers, with beer, wine, and hot hors d’oeuvres.

2018 Conference Sponsors⟜ ⟜

Shameless  
Plug

Washington DC  
Sep 30 – Oct 3, 2019

�17

www.memsys.io

http://www.memsys.io

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

  

Thank You!
Bruce Jacob

blj@umd.edu  
www.ece.umd.edu/~blj

�18

http://www.ece.umd.edu/~blj

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

  
Backup Slides

�19

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE �20

System Level

Memory
Controller

Memory
Controller

Side View

Top View

Package Pins

Edge Connectors

PCB Bus Traces

DIMM 0 DIMM 1 DIMM 2

DRAMs DIMMs

Rank 0, Rank 1
or

Rank 0, Rank 1
or even

Rank 0/1, Rank 2/3
…

One DIMM can have one
RANK, two RANKs, or even
more depending on its
configuration.

I/O

MUX

One DRAM device with eight
internal BANKS, each of which
connects to the shared I/O bus.

One DRAM bank is comprised of many
DRAM ARRAYS, depending on the part’s
configuration. This example shows four
arrays, indicating a x4 part (4 data pins).

DRAM Array

One BANK,
four ARRAYS

Nomenclature

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Background

�21

Chapter 15 MEMORY SYSTEM DESIGN ANALYSIS 589

Per Bank (DRAM Command) Queue Depth

B
an

dw
id

th
 E

ffi
ci

en
cy

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e

4 6 8 10 12 14 16
0

20

40

2R8B vs. 1R8B

1R16B vs. 1R8B

Legend

2R16B vs. 2R8B

 tRTRS ! 1 cycle

tRTRS ! 2 cycles

 tRTRS ! 3 cycles
2R8B vs. 1R16B

1R16B outperforms
2R8B with queue
depth of 16

FIGURE 15.36: Bandwidth improvement—16-bank versus 8-bank DDR3 devices; relaxed tFAW and tWTR.

0 200 400 600 800
Memory Access Latency (ns)

1

100

10000

1e+06

1e+08

N
um

be
r

of
 A

cc
es

se
s

at
 G

iv
en

 L
at

en
cy

 V
al

ue

0 200 400 600 800
1

100

10000

1e+06

1e+08

N
um

be
r

of
 A

cc
es

se
s

at
 G

iv
en

 L
at

en
cy

 V
al

ue

Memory Access Latency (ns)

FCFS179.art CPRH179.art

FIGURE 15.37: Impact of scheduling policy on memory-access latency distribution: 179.art.

ch15_P379751.indd 589ch15_P379751.indd 589 8/8/07 4:03:32 PM8/8/07 4:03:32 PM

590 Memory Systems: Cache, DRAM, Disk

problems with the CPRH scheduling algorithm for
other workloads. Figure 15.38 shows the latency dis-
tribution curve for 188.ammp, and 188.ammp was
one workload that points to possible issues with the
CPRH algorithm. Figure 15.38 shows that the CPRH
scheduling algorithm resulted in longer latencies for
a number of transactions, and the number of trans-
actions with memory-access latency greater than 400
ns actually increased. Figure 15.38 also shows that
the increase of a small number of transactions with
memory-access latency greater than 400 ns is offset
by the reduction of the number of transactions with
memory transaction latency around 200 ns and the
increase of the number of transactions with mem-
ory-access latency less than 100 ns. In other words,
the CPRH scheduling algorithm redistributed the
 memory-access latency curve so that most memory
transactions received a modest reduction in access
latency, but a few memory transactions suffered a
substantial increase in access latency. The net result
is that the changes in access latency cancelled each
other out, resulting in limited speedup for the CPRH
algorithm over the FCFS algorithm for 188.ammp.

15.5 A Latency-Oriented Study
In the previous section, we examined the impact

of transaction ordering on the memory-access
latency distribution for various applications. Memory
 controller schedulers typically attempt to maximize
performance by taking advantage of memory applica-
tion access patterns to hide DRAM-access penalties.
In this section, we provide insight into the impact that
DRAM architectural choices make on the average read
latency or memory-access latency. We briefl y examine
how the choice of DRAM protocol impacts memory
system performance and then discuss in detail how
aspects of the memory system protocol and confi gu-
ration contribute to the observed access latency.4

15.5.1 Experimental Framework
This study uses DRAMSim, a stand-alone memory

subsystem simulator. DRAMSim provides a detailed
execution-driven model of a Fully Buffered (FB)
DIMM memory system. The simulator also sup-
ports the variation of memory system parameters of
interest, including scheduling policies and memory

0 200 400 600 800
Memory Access Latency (ns)

1

100

10000

1e 06

1e 08

N
um

be
r

of
 A

cc
es

se
s

at
 G

iv
en

 L
at

en
cy

 V
al

ue

N
um

be
r

of
 A

cc
es

se
s

at
 G

iv
en

 L
at

en
cy

 V
al

ue

0 200 400 600 800
1

100

10000

1e 06

1e 08

Memory Access Latency (ns)

188.ammp FCFS 188.ammp CPRH

FIGURE 15.38: Impact of scheduling policy on memory-access latency distribution: 188.ammp.

4Some of this section’s material appears in “Fully-Buffered DIMM memory architectures: Understanding mechanisms,
overheads and scaling,” by B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. In Proc. 13th International Symposium on High
Performance Computer Architecture (HPCA 2007). Phoenix, AZ, February 2007. Copyright IEEE. Used with permission.

ch15_P379751.indd 590ch15_P379751.indd 590 8/8/07 4:03:33 PM8/8/07 4:03:33 PM

Not only Faster 
but Accurater, too

Bruce Jacob

University of
Maryland

SLIDE

Features  
Extracted

�22

Table 6.1: Features with Descriptions

Feature Values Description Intuition

same-row-last 0/1

whether the last request

that goes to same bank has the same row

(as this one)

key factor for the most

recent bank state

is-last-recent 0/1
whether the last request to the

same bank added recently (tRC)

relevancy of the last request

to the same bank

is-last-far 0/1
whether the last request to the

same bank added long ago (tRFC)

relevancy of the last request

to the same bank

op 0/1 operation(read/write) for potential R/W scheduling

last-op 0/1 operation of last request to the same bank for potential R/W scheduling

ref-after-last 0/1
whether there is a refresh since

last request to the same bank

refresh reset the

bank to idle

near-ref 0/1 whether this cycle is near a refresh cycle
latency can be really

high if it’s near a refresh

same-row-prev int
number of previous requests with

same row to the same bank

if there is same row

request then OOO

may be possible

num-recent-bank int
number of requests added recently

to the same bank

contention/queuing

in the bank

num-recent-rank int
number of recent requests added

recently to the same rank

contention

num-recent-all int
number of recent requests added

recently to all ranks

contention

108

