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Figure 1: When CPU and memory simulators are coupled,
the timings of thememory request between the LLC and the
memory controller could be easily overlooked.

better simulation accuracy. Finally, we quantify the LLC to memory
latency for various high-end and emerging platforms and we show
its signi�cant range, between 30ns (POWER8) and 277ns (Knighths
Landing); therefore, it is really important to properly adjust and
validate this parameter in system simulators before any measure-
ments are performed. Overall, we believe that the issues address
in this paper would help researchers of the computer architecture
community to improve main memory system simulation.

The rest of the paper is organized as follows. Section 2 explains
simulation environment and evaluates main memory latency with
a microbenchmark for real and simulated systems. This section also
propose approaches to �x the deviation identi�ed between real and
simulated main memory latency measurements. Section 3 details
the validation of the proposed approaches with SPEC CPU2006
benchmarks , while Section 4 discusses LLC tomainmemory latency
of various high-end and emerging High Performance Computing
(HPC) platforms. Section 5 analyzes the validation procedure of
state-of-the-art system and memory simulators . Finally, Section 6
presents the conclusions of the study.

2 MAIN MEMORY LATENCY EVALUATION
AND SIMULATION ENHANCEMENTS

In this section we detail the methodology used to model a targeted
system into a simulation infrastructure and we describe the mi-
crobenchmarks used to discover the main memory access latency.
The targeted system we aimed to model is an Intel Xeon E5-2670
Sandy Bridge-EP processor [8] operating at 3.0GHz. The main
memory comprises four 4GiB DIMMS devices [21] connected to
the processor using four DDR3-1600 channels. Each processor runs
eight cores where the hyper-threading feature has been disabled
like in most HPC systems [22].

2.1 Simulation environment
The simulator infrastructure we chose to use is an integration of
two simulators: ZSim [20] as CPU simulator and DRAMsim2 as
main memory simulator.

ZSim is a user-level, execution-driven CPU simulatorwidely used
in the computer architecture research community. Developed by
researchers fromMIT and Stanford University, ZSim is designed for
simulation of large-scale systems. However, ZSim was originally de-
veloped to simulate Intel Westmere architecture which is no longer
being used in HPC domain. One of the tasks that we had to perform

Table 1: Cache parameters of the Sandy Bridge EP class pro-
cessor used in the study.

L1-D L2 L3

Size 32 KiB 256 KiB 20MiB
Latency (in CPU cycles) 4 8 28
Cache line size 64 B 64 B 64 B
Set associativity 8-way 8-way 20-way

was to upgrade and validate ZSim for Intel Sandy Bridge processor.
The work to upgrade ZSim consisted in the following steps: First,
we adjusted the simulator by updating the instruction latencies
obtained trough the execution of CPU microbenchmarks [23] in the
real hardware; Second, we improved the micro-operation fusion
and we increased the number of entries in the Reorder Bu�er (ROB)
from 128 (Westmere) to 168 (Sandy Bridge); Third, we con�gured
the cache hierarchy according to the Intel documentation [8] for a
Sandy Bridge EP Class, summarized in Table 1. Finally, we updated
the L3 caching mechanism implementing the hashing function
described in work by Maurice et al. [13].

ZSim is easily integrated with a main memory simulator such
as DRAMsim2 . DRAMsim2 is a cycle-accurate simulator validated
against Verilogmodels formemory devices.We con�gured DRAM-
sim2 following manufactures documentation with speci�c timings
on memory device part [21].

2.2 Memory latency microbenchmark
State-of-the-artmemory benchmarks such as LMbench [15], stream
[14] and Intel’s Memory Latency Checker (imlc) [24] can be used
for main memory latency measurements. However, they are not a
good �t for our study because it is very di�cult to use them in ZSim
simulation. LMbench and stream rely on compiler optimization
and imlc is a binary-only distributed program; Hence, no tailored
analysis nor modi�cation to the code could be made. Therefore, as
none of the open source existent benchmarks was appropriate for
our analysis, we had to design a speci�c microbenchmark to use
for our experiments.

Our microbenchmark is designed to stress the caches and main
memory implementing the concept of pointer chasing. Because the
microbenchmarks are designed to run on top of an Operating Sys-
tem, a C program wraps all functionality outside the microbench-
mark design as memory initialization, metrics collection, and
program cleanup. By doing so, the microarchitectural implications
of running on top of an OS are diminished.

In the microbenchmarks prologue, we allocate a contiguous
section of memory that stores an array of pointers. The elements
on the array are initialized as a circular linked list that follows a
pointer chase pattern, Figure 2 portray an example of such ordering.
Our design goals for the microbenchmarks are summarized as:
(1) Iteratively traverse the whole array; (2) Access di�erent cache
lines for every memory access; (3) The memory accesses have a
random pattern preventing data prefetchers to bring data to any
level of cache.

2
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(a) DRAM latency and overall latency reported by
Gem5 and ZSim.
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(b) ZSim 2-phase memory model timeline diagram compared with real hard-
ware/cycle accurate model. Three back-to-back memory requests (0, 1, 2) are issued
to the memory model.

Figure 3: Simulator memory latency analysis

main memory backend at all. [17] supports cycle accurate memory
backend, but as we will see soon, it has its issues when integrating
a cycle accurate memory backend.

The problem was �rst discovered by [19], who observed a mem-
ory latency error of about 20ns when they tested a memory latency
benchmark. But [19] did not answer where this 20ns missing la-
tency comes from as was suspecting it came from the cycle accurate
DRAM simulator they were using. We will analyze this situation
and provide a conclusive answer to this question.

To replicate the issue independently, we developed a simpli�ed
version of LMBench(ram_lat we referred in Table 1) that randomly
traverse a huge array, and measure the average latency of each
access. When the array is too large to �t in the cache and most
accesses go to DRAM, the average access latency will include the
DRAM latency. The benchmark inserts time stamps before and
after the memory traversal, and use them to determine the overall
latency of a certain number of memory requests, and divide the
number of requests to obtain average memory latency. This average
memory latency consists of cache latency and DRAM latency, and
thus we use the term overall latency in the following discussion.

Like [19], we ran this benchmark natively on our machine to
obtain “hardware measured” latency(72ns), then ran it in ZSim
along with DRAMSim2 as DRAM backend, and we were able to
reproduce similar results as [19]. That is, the overall latency (43ns)
is 29ns lower than hardware measurement (72ns). To determine
whether this is a ZSim speci�c issue or DRAM simulator issue, we
ran the same benchmark in Gem5 with the same cache and DRAM
parameters, and this time, the overall latency is 78ns, much closer to
our hardware measurement. So we conclude this is a ZSim speci�c
issue not a DRAM simulator issue. We then further looked into the
simulator statistics, and found that the DRAM latency reported by
the DRAM simulator in Gem5 is 55ns, which makes sense as the
overall latency (78ns) should be a combination of DRAM latency
(55ns) and cache latency (23ns). However, in ZSim, the DRAM

latency reported by the DRAM simulator is 73ns, much higher than
overall latency, which makes no sense. Figure 3a visualize these
results. This again con�rms the issue lies within the ZSim memory
model.

The way ZSim memory model works is, it has two phases of
memory models, the �rst phase is an �xed latency model that
assumes a �xed “minimum latency” for all memory events. The
purpose is to simulate instructions as fast as possible, and generate a
trace of memory events. After the memory event trace is generated,
the second phase kicks in and that’s when the cycle accurate DRAM
simulator actually works, the cycle accurate simulation use the
event trace as input and update latency timings associated with
these events.

For instance, Figure 3b demonstrates how ZSim memory model
handles memory requests di�erently from hardware/cycle accurate
models. Suppose there are 3 back-to-back memory requests(each
relies on the �nishing of previous one). In real hardware or a cycle
accurate model, each memory request’s latency may vary and next
request cannot be issued until the previous request is returned. In
ZSim Phase 1, all requests are assumed to be �nished with “mini-
mum latency”, and therefore �nish earlier than they should. Then
in ZSim Phase 2, cycle accurate simulation is performed, more ac-
curate latency timing is produced by cycle accurate simulator and
all 3 requests update their timings. But even if all memory requests
obtain correct timings in Phase 2, unfortunately, when the simu-
lated program, like our benchmark, has instrumenting instructions
such as reading system clock, it will obtain the timing numbers
during Phase 1, which can be substantially smaller. This is why the
overall latency is much smaller than DRAM latency.

So in other words, the “minimum latency” ZSim parameter will
dictate the latency observed by the simulated program. To verify
this claim, we run the same simulation with di�erent “minimum
latency” parameters, and plot them against the benchmark reported

But Wait — and Accurater?
The Real Culprit (took 2 yrs to find):
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Figure 5.1: Parallel DRAM simulator architecture.

5.1.2 Evaluation

First, we examine the execution speedup of the parallel DRAM simulator over

trace inputs. The trace frontend contributes little overhead to the overall simulation

time. We can also load traces to keep the DRAM simulator busy all the time to

maximize the simulation time spent in the DRAM simulator. Therefore it is the

ideal scenario for testing parallelization speedup.

We run two types of trace, stream and random, for 10 million cycles on a

8-channel HBM configuration. We compare the simulation time of running the

simulation in 1, 2, 4, and 8 threads respectively.

78

Large parallel simulations 
enabled, wherein each CPU 

model can have its own 
memory-system predictor to 

provide estimates of main 
memory-system latency.

None of the memory models 
need interact to provide their 

predictions.

Moreover, the CPU models can 
be written in a FAR simpler 

way than they are now, making 
them faster and less likely to 

contain “gotcha” assumptions.
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problems with the CPRH scheduling algorithm for 
other workloads. Figure 15.38 shows the latency dis-
tribution curve for 188.ammp, and 188.ammp was 
one workload that points to possible issues with the 
CPRH algorithm. Figure 15.38 shows that the CPRH 
scheduling algorithm resulted in longer latencies for 
a number of transactions, and the number of trans-
actions with memory-access latency greater than 400 
ns actually increased. Figure 15.38 also shows that 
the increase of a small number of transactions with 
memory-access latency greater than 400 ns is offset 
by the reduction of the number of transactions with 
memory transaction latency around 200 ns and the 
increase of the number of transactions with mem-
ory-access latency less than 100 ns. In other words, 
the CPRH scheduling algorithm redistributed the 
 memory-access latency curve so that most memory 
transactions received a modest reduction in access 
latency, but a few memory transactions suffered a 
substantial increase in access latency. The net result 
is that the changes in access latency cancelled each 
other out, resulting in limited speedup for the CPRH 
algorithm over the FCFS algorithm for 188.ammp. 

15.5 A Latency-Oriented Study
In the previous section, we examined the impact 

of transaction ordering on the memory-access 
latency distribution for various applications. Memory 
 controller schedulers typically attempt to maximize 
performance by taking advantage of memory applica-
tion access patterns to hide DRAM-access penalties. 
In this section, we provide insight into the impact that 
DRAM architectural choices make on the average read 
latency or memory-access latency. We briefl y examine 
how the choice of DRAM protocol impacts memory 
system performance and then discuss in detail how 
aspects of the memory system protocol and confi gu-
ration contribute to the observed access latency.4

15.5.1 Experimental Framework
This study uses DRAMSim, a stand-alone memory 

subsystem simulator. DRAMSim provides a detailed 
execution-driven model of a Fully Buffered (FB) 
DIMM memory system. The simulator also sup-
ports the variation of memory system parameters of 
interest, including scheduling policies and memory 
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FIGURE 15.38: Impact of scheduling policy on memory-access latency distribution: 188.ammp.

4Some of this section’s material appears in “Fully-Buffered DIMM memory architectures: Understanding mechanisms, 
overheads and scaling,” by B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. In Proc. 13th International Symposium on High 
Performance Computer Architecture (HPCA 2007). Phoenix, AZ, February 2007. Copyright IEEE. Used with permission.
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Table 6.1: Features with Descriptions

Feature Values Description Intuition

same-row-last 0/1

whether the last request

that goes to same bank has the same row

(as this one)

key factor for the most

recent bank state

is-last-recent 0/1
whether the last request to the

same bank added recently (tRC)

relevancy of the last request

to the same bank

is-last-far 0/1
whether the last request to the

same bank added long ago (tRFC)

relevancy of the last request

to the same bank

op 0/1 operation(read/write) for potential R/W scheduling

last-op 0/1 operation of last request to the same bank for potential R/W scheduling

ref-after-last 0/1
whether there is a refresh since

last request to the same bank

refresh reset the

bank to idle

near-ref 0/1 whether this cycle is near a refresh cycle
latency can be really

high if it’s near a refresh

same-row-prev int
number of previous requests with

same row to the same bank

if there is same row

request then OOO

may be possible

num-recent-bank int
number of requests added recently

to the same bank

contention/queuing

in the bank

num-recent-rank int
number of recent requests added

recently to the same rank

contention

num-recent-all int
number of recent requests added

recently to all ranks

contention
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