Bruce Jacob

University of Maryland

SLIDE I

Faster Keystone Professor University of Maryland

and Accurater The Future of Memory-System Modeling and Simulation

Bruce Jacob (with Ph.D. results of Shang Li)

Bruce Jacob

University of Maryland

SLIDE 2

We can **get up here** (e.g., via prediction)

Based

Cycle Accurate HDL

Simulation Accuracy

Background tRP = 15ns

> Bank Precharge

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 3

TIME

tRCD = 15ns, tRAS = 37.5ns

Row Activate (15ns) and Data Restore (another 22ns)

Cost of access is high; requires significant effort to amortize this over the (increasingly short) payoff.

CPU/\$ / Read A Outgoing bus request Read B Write X, data Read Z Write Q, data Write A, data Read W Read Z Read Y WR MC

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 4

Bruce Jacob

University of Maryland

SLIDE 5

Faster?

Simulation Speed

- Simulation speed: 100X faster
- Error: < 20%
- 10s of cores simulated on 10s of cores

Marss-O3 Gem5-O3

Faster?

Easily Predictable Result:

Memory-System Simulation is now Limiting Factor

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 6

• • •

Bruce Jacob

Even Faster via Prediction

Statistical DRAM Model Proposed Approach

• • •

Turning DRAM timing simulation into a classification problem

Clock	Address	OP
0	0x01230000	READ
12	0x01230020	READ
40	0x0123003C	READ
65	0x06340000	WRITE

С

	Class		Latency
lassification	Idle	Recovery	36
	Row-Hit		22
	Row-Hit		22
	Row-Miss		56
	• • •		• • •

Bruce Jacob

University of Maryland

Training Process

Training: Supervised Learning

~7000 Requests

Various access patterns, inter-arrival timings to cover all kinds of workloads

Bruce Jacob

University of Maryland

Models (performed the same)

Models: Decision Tree & Random Forest

Bruce Jacob

University of Maryland

SLIDE 12

Results: <u>Way</u> Faster

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 12

Classification Accuracy

Average Latancy Accuracy

but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 14

ZSim 2-phase memory model timeline diagram compared with real hardware/cycle accurate model.

Three back-to-back memory requests (0, 1, 2) are issued to the memory model.

First phase of memory access aggressively schedules reqs for performance; second phase fails to take into account dependence information.

if (INSTR.isMemOp) { if (L1 cache miss(INSTR.dAddr)) { if (L2 cache miss(INSTR.dAddr)) { INSTR.valid = now + DRAM request (INSTR.dAddr);

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 15

But Wait — <u>and</u> Accurat<u>er</u>?

What Programmers WANT: (and if you can do it \rightarrow accurate, parallel sims)

if (INSTR.isMemOp) { if (L1 cache miss(INSTR.dAddr)) { if (L2 cache miss(INSTR.dAddr)) { INSTR.valid = now + DRAM request (INSTR.dAddr);

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 15

But Wait — <u>and</u> Accurat<u>er</u>?

What Programmers WANT: (and if you can do it \rightarrow accurate, parallel sims)

Prediction gives it to them

Bottom Li The Future:

Large parallel simulations enabled, wherein each CPU model can have its own memory-system predictor to provide estimates of main memory-system latency.

None of the memory models need interact to provide their predictions.

Moreover, the CPU models can be written in a FAR simpler way than they are now, making them faster and less likely to contain "gotcha" assumptions.

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 16

Bottom Line (scalability)

Shameless Plug

Washington DC Sep 30 – Oct 3, 2019

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 17

MEMSYS 2018

The International Symposium on Memory Systems * October 1–4, Washington DC

Keynote Addresses				
Hardware Keynote:	Steve Wallack Micror			
Software Keynote:	Brian Barret Amazor			
Postamble: J The	omas Pawlowsk Micror			

Panelists

WWW.memsys.io

Zeshan Chishti, Intel Zhaoxia (Summer) Deng, Facebook Chen Ding, U. Rochester David Donofrio, Berkeley Lab Dietmar Fey, FAU Erlangen-Nürnberg Maya Gokhale, LLNL Xiaochen Guo, Lehigh U. Manish Gupta, NVIDIA Fazal Hameed, TU Dresden Matthias Jung, Fraunhofer IESE Kurt Keville, MIT Hyesoon Kim, Georgia Tech Scott Lloyd, LLNL Sally A. McKee, Clemson Moinuddin Qureshi, Georgia Tech Petar Radojkovic, BSC Arun Rodrigues, Sandia National Labs Robert Voigt, Northrop Grumman Gwendolyn Voskuilen, Sandia David T. Wang, Samsung Vincent Weaver, U. Maine Norbert Wehn, U. Kaiserslautern Yuan Xie, UC Santa Barbara Ke Zhang, Chinese Acad. of Sciences Xiaodong Zhang, Ohio State Jishen Zhao, UC San Diego

Micron

Memory-device manufacturing, memory-architecture design, and the use of memory technologies by application software all profoundly impact today's and tomorrow's computing systems, in terms of their performance, function, reliability, predictability, power dissipation, and cost. Existing memory technologies are seen as limiting in terms of power, capacity, and bandwidth. Emerging memory technologies offer the potential to overcome both technologyand design-related limitations to answer the requirements of many different applications. Our goal is to bring together researchers, practitioners, and others interested in this exciting and rapidly evolving field, to update each other on the latest state of the art, to exchange ideas, and to discuss future challenges.

Conference Schedule and Venue

The conference will be held at the Gaylord National Resort & Convention Center at The National Harbor, Maryland. An opening reception will be held on Monday evening, followed by 2 1/2 days of technical presentations (full days on Tuesday and Wednesday, a half length technical day on Thursday), Conference Dinner Wednesday evening, and Awards Luncheon Tuesday afternoon. A discounted room block is still available on the registration site, with only a few rooms left.

Tracks and Topics

The following topics will be presented over the 3-day conference:

- Memory-system design from both hardware and software perspectives
- Memory failure modes and mitigation strategies
- Memory-system resilience, especially at large scale
- Memory and system security issues
- Operating system design for hybrid/nonvolatile memories
- Technologies like flash, DRAM, STT-MRAM, 3DXP, memristors, etc.
- Memory-centric programming models, languages, optimization
- Compute-in-memory and compute-near-memory technologies
- Large-scale data movement: networks, hardware, software, mitigation
- Virtual memory redesign for unifying storage/memory/accelerators
- Algorithmic & software memory-management techniques
- Emerging memory technologies, both hardware and software, including memory-related blockchain applications
- Interference at the memory level across datacenter applications
- Issues in the design and operation of large-memory machines
- In-memory databases and NoSQL stores
- Post-CMOS scaling efforts and memory technologies to support them, including cryogenic, neural, quantum, and heterogeneous memories
- The conference focuses on these and other related topics.

Publications & **Presentations**

All accepted papers will be published in the ACM & IEEE Digital Libraries. Our primary goal is to showcase interesting ideas that will spark conversation between disparate groups-to get applications people, operating systems people, system architecture people, interconnect people and circuits people to talk to each other. Thus, we try to showcase interesting ideas in a format that will facilitate this. The talks are short, to encourage participation and discussion. Every evening we host a panel discussion of invited speakers, with beer, wine, and hot hors d'oeuvres.

intel

FIT Sandia National Laboratories

NORTHROP GRUMMAN

Lawrence Livermore National Laboratory

Bruce Jacob

University of Maryland

SLIDE 18

Bruce Jacob blj@umd.edu www.ece.umd.edu/~blj

Bruce Jacob

University of Maryland

SLIDE 19

Backup Slides

Nomenclature

Not only Faster but Accurater, too

Bruce Jacob

University of Maryland

SLIDE 20

Bruce Jacob

University of Maryland

SLIDE 22

Features Extracted

Feature	Values	Description	Intuition
same-row-last	0/1	whether the last request that goes to same bank has the same row (as this one)	key factor for the most recent bank state
is-last-recent	0/1	whether the last request to the same bank added recently (tRC)	relevancy of the last request to the same bank
is-last-far	0/1	whether the last request to the same bank added long ago (tRFC)	relevancy of the last request to the same bank
ор	0/1	operation(read/write)	for potential R/W scheduling
last-op	0/1	operation of last request to the same bank	for potential R/W scheduling
ref-after-last	0/1	whether there is a refresh since last request to the same bank	refresh reset the bank to idle
near-ref	0/1	whether this cycle is near a refresh cycle	latency can be really high if it's near a refresh
same-row-prev	int	number of previous requests with same row to the same bank	if there is same row request then OOO may be possible
num-recent-bank	int	number of requests added recently to the same bank	contention/queuing in the bank
num-recent-rank	int	number of recent requests added recently to the same rank	contention
num-recent-all	int	number of recent requests added recently to all ranks	contention

