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Motivation: Network Design Points for Future Systems
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« Summit and Sierra: 2x Mellanox EDR NICs @ ~25 GB/s per node in fat-tree
topology design.

* Frontier: Multiple NICs providing 100 GB/s network bandwidth in a Slingshot
dragonfly network topology.

- Trend: Systems to use multiple NICs per node to meet bandwidth demands.

For future systems there appears to be an interesting set of design questions around the
number of NICs or “rails” per compute node and network topology ?

We can address it at full network/system scale using parallel simulation methods and tools



CODES: Co-Design of Exascale Storage Architectures
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CODES: https://github.com/codes-org/codes
ROSS: https://github.com/ROSS-org/ROSS.qgit

Parallel Performance Data Collection & Visualization
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https://github.com/codes-org/codes
https://github.com/ROSS-org/ROSS.git

ROSS - Scalable Parallel Simulation Engine

» Discrete-Event approach to modeling

« Core simulation entity is Logical e —— Actual ‘|5equoia Performance
Process 5e+1l - —5¢— Linear Performance
: . (2 racks as base)
« Schedulers: sequential, conservative and = 4.5e+ll - -
optimistic § de+11
» Optimistic rollback supported via 9 356411
“Reverse Computation” £
» Opportunity to leverage DOE investmentsin 2 setll
current supercomputer systems o 2oetll
« Simulation parallel scaling limited by: T 2e+11
« Performance of supercomputer’s or £ 15e+11
cluster’s network f>j
« Exploitable parallelism in the DES model. terdl
« Increases possible model configurations 5e+10
« Larger network switches & “fat node” 0 ' ' ' '
designs reduce opportunity to exploit 28 24 48 96 120
model parallelism. Number of Blue Gene/Q Racks



HPC Interconnect Traffic Simulation

Network of Switches

Terminals attached to Switches

*Traffic is Generated at Terminals

Traffic is Routed through network of
Switches

*Traffic Terminated at a pre-
specified destination Terminal

*All messages/packets realized as
events in the discrete-event simulator



Fit Fly Starts w/ Slim Fly Network Topology

* Slim Fly [Besta and Hoefler @SC’14] arranges
routers into groups using MMS graph structure

- Each Router:
* Some degree of Local connectivity

» Some degree of Global connectivity
* Some degree of Terminal connectivity

» Guaranteed Diameter-2 (MMS graph property)

* Groups are divided into two subgraphs

* No global connections between two groups within
same subgraph

* Connections are determined via Finite Field
generation method. erouters Minodes ~— node connections === local connections —— global connections

- Makes it challenging to physically build



Slim Fly Network Generation

*Find a prime power g = 4w + 6,where § €
{—1,0,1} and w € N, such that N, = 2¢? is

satisfied for the desired number of routers N, (000) (01.0) (020) (030 (040) (100 (110) (120 (140
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Figure 2: Example MMS graph with ¢ = 5 illustrating the
connection of routers within groups and between subgraphs.

E)E

* Construct a Galois field of order g: F,
* Find the primitive element ¢ that generates it

» All nonzero elements of F, can be written as &',
wherei € N

 Using &, construct generator sets X and X’

» Determine router-router connections using
following equations:

router(a, x,y) connected to (a,x,y") iff y —y" € X (1) [intragroup connections alpha]
router(B, m, c¢) connected to (B, m,c") iff c — ¢’ € X" (2) [intragroup connections beta]
router(a, x,y) connected to (B, m,c) iff y = mx + ¢ (3) [connections between alpha, beta]



Fit Fly — Multi-Rail, Multi-Plane Slim Fly
 Multi-Rail, Multi-Planar Slim Fly Network ff/’/’ffff?\?\f\ﬂ\'\\\\
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Fit Fly Validation

*Based on previously validated
Slim Fly Model

*Additional planes bring
additional throughput
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*Observed expected increase In
throughput with synthetic
uniform random traffic
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*Conducted visualization tests
to make sure all links are used
as expected.
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Workloads

* DOE Design Forward Application Traces (dumpi format)

* Algebraic MutliGrid Solver (AMG) @1728 ranks — mini-app for unstructured mesh physics that spends over
50% of it's time in comms.

* MultiGrid (MG) @1000 ranks — mini-app for adaptive mesh refinement that spends near 4% of time in comms.

- Synthetic Background
+ 1000 ranks

* Uniform Random w/ mean Interval 100us
* Varied payload size for different levels of intensity

- Compute Cluster
* All runs used upto 128 MPI ranks across 8 nodes of Intel/Xeon cluster.

* Runtimes: 18 mins wall-clock worst case for up to 35ms of simulated network traffic.

Application | Background Intensity (% Link Bandwidth)

AMG1728 0 2 4 7.5 15 36.25 72.5"
MG1000 0 2 4 7.5 15 36.25 72.5"



Evaluated Metrics

Maximum Communication Time

* Total amount of time spent by any one rank of the primary workload from the first
MPI message it sends to the final message

*Average Packet Latency
*Measures how long on average packets spent in transit
* Correlated with communication time but application agnostic

*Average Hop Count
*Measures mean number of routers visited by packets in route to destination

These three metrics give insight into induced congestion in the networks and
their ability to manage increasing levels of interference traffic



Compared Networks

* Slim Fly, Fit Fly, 1D Dragonfly and Megafly

1D Dragonfly (Dragonfly Plus)




Compared Networks

Slim Fly Fit Fly Dragonfly Megafly
Router Radix 28 28 36 36
Planes 1 2 1 1
Rails 1 2 1 1
Groups 26 52 19 10
Node Count 3042 3042 3078 3240
Router Count 338 676 342 360
Global Connections 4732 9464 3078 3240
Nodes/Group/Rail 117 117 162 324
Global Connections / Group 169 169 162 324
Link Bandwidth 12.5 GiB/s 12.5 GiB/s 12.5 GiB/s 12.5 GiB/s
Nodes per Router 9 9 9 18 (Leaves only)
Routing Algorithm Adaptive (UGAL) | Adaptive (UGAL) | Adaptive (PAR) [35] | Adaptive (PAR)
Planar Selection Scheme n/a CONGESTION n/a n/a




Fit Fly Bandwidth Considerations

*Fit Fly has distinct advantage due to its increased bandwidth and routers
*Not super fair comparison

*Configure Slim Fly and Fit Fly so that they are of comparable throughput

Additionally Tested Configuration Pairs

Slim Fly (12.5GiB/s) (EDR) Fit Fly (7GiB/s) (FDR)

Slim Fly (25GiB/s) (HDR) Fit Fly (12.5GiB/s) (EDR)



Experiments Overview

Experiment Set 1 Experiment Set 2
Cross Network Equalized Bandwidth

Random Random Random Random
1000 1000 1000 1000
e \ "  SlimFly || FitFly
| SimFly | FitFly 125GiBls | 7GiBls
N £ N s D ™
1D Slim Fly Fit Fly
Dragonfly || Megaly  25GiBls || 12.5GiBls
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Cross Network — MG1000
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Discussion: Cross Network

* Slim Fly performed well against state of the art E)égerimﬁgtzv SO?F
Dragonfly and Megafly networks 0SS

* Possible candidate for future networks?

*Fit Fly showed great resilience to high levels of

interference traffic T e,
*Beat Slim Fly by an order of magnitude 1000 1000
*Remember Fit Fly finished in < 1 millisecond even

at high interference / Y
Slim Fly Fit Fly
- Slim Fly and Fit Fly networks show great X A

promise T Moaaf )

 Low-diameter-high-path-diversity ~ Dragonfly || = |




Equalized Bandwidth (12.5GiB/s) - AMG1728
Note: agg. bandwith is used

to make FF and SF more
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Figure 6: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Link
bandwidth of Slim Fly in this case is 12.5 GiB/s (¥InfiniBand EDR) while Fit Fly is 7 GiB/s (*InfiniBand FDR). Total aggregate
bandwidth is calculated by B} - P, where B is the bandwidth of each link in the network.




Equalized Bandwidth (12.5GiB/s) — MG1000
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Figure 7: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Link bandwidth of Slim Fly in this case is 12.5 GiB/s (=InfiniBand EDR) while Fit Fly is 7 GiB/s (=InfiniBand FDR). Total
aggregate bandwidth is calculated by B; - P, where B; is the bandwidth of each link in the network.



Equalized Bandwidth (25GiB/s) - AMG1728
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Figure 8: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Link
bandwidth of Slim Fly in this case is 25 GiB/s (xInfiniBand HDR) while Fit Fly is 12.5 GiB/s (*InfiniBand EDR). Total aggregate
bandwidth is calculated by B; - P, where Bj is the bandwidth of each link in the network.

Tested Configuration Pair

Slim Fly (25GiB/s) Fit Fly (12.5GiB/s)




Equalized Bandwidth (25GiB/s) — MG1000
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Figure 9: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Link bandwidth of Slim Fly in this case is 25 GiB/s (=InfiniBand HDR) while Fit Fly is 12.5 GiB/s (=InfiniBand EDR). Total
aggregate bandwidth is calculated by B; - P, where B; is the bandwidth of each link in the network.

Tested Configuration Pair

Slim Fly (25GiB/s) Fit Fly (12.5GiB/s)



Discussion: Equalized Bandwidth

- Equalizing the aggregate bandwidth across networks Experiment Set 2
slightly reduced the advantage that Fit Fly had Equalized Bandwidth
* Fit Fly still pulled ahead
* Greater interference resilience
- Additional planes of routers give less chance for any P P
two packets to interact 1000 1000
* Less interference
* Less buffer wal.t t|rT.1e “SimFy || FitFly
* Increased Application Performance 12.5GiB/s || 7GiB/s
*More planes of cheaper routers may be a better  SlimFly || FitFly |
option to single-plane-high-bandwidth networks - 25GiB/s || 12.5GiB/s




Conclusion & Future Work

Server N

. o | RN | | EHEe
» Slim Fly networks show promise in comparison to ] N B 1y
current networks designs. Etj |_¢_,
- Fit Fly appears to yield better performance than Slim H%%%
Fly for tested workloads even at higher cost SANTNAS
* Additional routers planes lower chance of (2) Current datacenter
interference
- Equalizing overall bandwidth throughput, additional cPUs Shared disaggregated

planes give strong advantage

* Multi-rail, multi-plane design lead toward considering — {core hewor UNIFIED INTERCONNECT
disaggregated SC network architectures in the future —§@g
apru| [Fera] | Asic | Devices
- CODES provides a strong environment for [cey] LEcea)

Specialized Hardware

answering “What If...” questions and fostering (b) Disaggregated datacenter
future innovation in the field of HPC

. ) From Gao et al OSDI 2016.
interconnection networks




