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Motivation: Network Design Points for Future Systems 

• Summit and Sierra: 2x Mellanox EDR NICs @  ~25 GB/s per node in fat-tree 
topology design.

• Frontier: Multiple NICs providing 100 GB/s network bandwidth in a Slingshot 
dragonfly network topology.

• Trend: Systems to use multiple NICs per node to meet bandwidth demands.
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For future systems there appears to be an interesting set of design questions around the 
number of NICs or “rails” per compute node and network topology ? 

We can address it at full network/system scale using parallel simulation methods and tools 



CODES: Co-Design of Exascale Storage Architectures
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Parallel Performance Data Collection & Visualization

CODES: https://github.com/codes-org/codes
ROSS: https://github.com/ROSS-org/ROSS.git

https://github.com/codes-org/codes
https://github.com/ROSS-org/ROSS.git


ROSS – Scalable Parallel Simulation Engine
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• Discrete-Event approach to modeling
• Core simulation entity is Logical 

Process
• Schedulers: sequential, conservative and 

optimistic
• Optimistic rollback supported via 

“Reverse Computation”
• Opportunity to leverage DOE investments in 

current supercomputer systems
• Simulation parallel scaling limited by:

• Performance of supercomputer’s or 
cluster’s network

• Exploitable parallelism in the DES model.
• Increases possible model configurations

• Larger network switches & “fat node” 
designs reduce opportunity to exploit 
model parallelism.



HPC Interconnect Traffic Simulation
•Network of Switches
•Terminals attached to Switches
•Traffic is Generated at Terminals

•Traffic is Routed through network of 
Switches

•Traffic Terminated at a pre-
specified destination Terminal

•All messages/packets realized as 
events in the discrete-event simulator
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Fit Fly Starts w/ Slim Fly Network Topology
• Slim Fly [Besta and Hoefler @SC’14] arranges 
routers into groups using MMS graph structure

• Each Router:
• Some degree of Local connectivity
• Some degree of Global connectivity
• Some degree of Terminal connectivity

• Guaranteed Diameter-2 (MMS graph property)

• Groups are divided into two subgraphs
• No global connections between two groups within 
same subgraph

• Connections are determined via Finite Field 
generation method.

•Makes it challenging to physically build
6



Slim Fly Network Generation
• Find a prime power 𝑞 = 4𝜔 + 𝛿, where 𝛿 ∈
−1, 0, 1 and 𝜔 ∈ N, such that 𝑁- = 2𝑞/ is 

satisfied for the desired number of routers 𝑁-
• Construct a Galois field of order 𝑞: 𝐹1

• Find the primitive element 𝜉 that generates it
• All nonzero elements of 𝐹1 can be written as 𝜉3, 

where 𝑖 ∈ 𝑁

• Using 𝜉, construct generator sets 𝑋 and 𝑋′

• Determine router-router connections using 
following equations:
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router α, 𝑥, 𝑦 connected to α, 𝑥, 𝑦′ iff 𝑦 − y@ ∈ 𝑋
router β,𝑚, 𝑐 connected to β,𝑚, 𝑐′ iff 𝑐 − c@ ∈ 𝑋′
router α, 𝑥, 𝑦 connected to β,𝑚, 𝑐 iff 𝑦 = 𝑚𝑥 + 𝑐

(1) [intragroup connections alpha] 
(2) [intragroup connections beta]
(3) [connections between alpha, beta]

groups in subgraph 1, shown in red. Equation 3 determines
the connections between the two subgraphs, shown in blue.
For simplicity, Equation 3 connections are displayed only for
router(1, 0, 0).
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Figure 2: Example MMS graph with q = 5 illustrating the
connection of routers within groups and between subgraphs.

2.2 Routing Algorithms

Our Slim Fly model currently supports three routing al-
gorithms for studying network performance: minimal, non-
minimal, and adaptive routing.

2.2.1 Minimal Routing
The minimal, or direct, routing algorithm routes all net-

work packets from source to destination using a maximum
of two hops between routers (property of MMS graphs guar-
antees router graph diameter of two regardless of the size of
the graph). If the source router and destination router are
directly connected, then the minimal path consists of only
one hop between routers. If the source compute node is con-
nected to the same router as the destination compute node,
then there are zero hops between routers. In the third case,
an intermediate router must exist that shares a connection
to both source and destination router so the packet traverses
a maximum of two hops.

2.2.2 Non-minimal Routing
Non-minimal routing for the Slim Fly topology follows the

traditional Valiant randomized routing algorithm [25]. This
approach selects a random intermediate router that is di↵er-
ent from the source or destination router and routes mini-
mally from source router to the randomly selected intermedi-
ate router. The packet is then routed minimally again from
the intermediate router to the destination router. The num-
ber of hops traversed with valiant routing would be double
that of minimal routing. In the optimal case when all three
routers are directly connected, the path will be two hops.
On the other end of the spectrum each minimal path to and
from the intermediate router can have two hops, bringing
the maximum number of possible hops to four.

2.2.3 Adaptive Routing
Adaptive routing mixes both minimal and non-minimal

approaches by adaptively selecting between the minimal path
and several valiant paths. To make direct comparisons for
validating our model, we follow a slightly modified version
of the Universal Globally-Adaptive Load-balanced (UGAL)
algorithm [26] shown in [14]. First, the minimal path and
several non-minimal paths (nI) are generated and their cor-
responding path lengths LM and Li

I , i 2 1, 2, ...nI are com-
puted. Next, we compute the penalty c = Li

I/LM ⇤ cSF ,
where cSF is a constant chosen to balance the ratio. Next,

Figure 3: Worst-case tra�c layout for the Slim Fly topology.

the final cost of each non-minimal route Ci
I = c ⇤ qiI is com-

puted, where qiI is the occupancy of the first router’s output
port corresponding to the path of route i. The cost of the
minimal path is simply the occupancy of the first router’s
port along the path qM . Then, the route with the lowest
cost is selected, and the packet is routed accordingly. With
this method, each packet has a chance of getting routed with
anywhere from one to four hops.

2.3 Traffic Workloads

To accurately simulate and analyze the network commu-
nication using a Slim Fly interconnection topology, we im-
plemented two tra�c workloads. The first workload is the
uniform random (UR) tra�c pattern that selects a random
destination compute node anywhere in the network that is
di↵erent from the source and destination computes nodes.
The second workload is a worst-case (WC) tra�c pattern
that simulates an application that is communicating in a
manner that fully saturates links in the network and thus
creates a bottleneck for minimal routing. In this workload,
each compute node in a router, R1, will communicate to a
node within a paired router that is the maximum two hops
away. Another pair of routers that share the same middle
link with the previous pair of routers will be established to
fully saturate that center link. As shown in the example in
Figure 3, all compute nodes connected to R1 communicate
with nodes connected to R3 along the blue path. Also, the
reverse communication is true, because all nodes connected
to R3 communicate with nodes connected to R1 along the
red path. The router pair R2 and R4 are set up in the same
manner communicating along the gray and green paths, re-
spectively. This setup of network communication puts a
worst-case burden on the link between routers 2 and 3 as 4p
nodes are creating 2p data flows. With all nodes paired in
this configuration, congestion quickly builds up for all nodes
in the system and limits maximum throughput to 1/2p.

2.4 Congestion Control

Both virtual channel [10] and credit based flow control
[11] are used in our Slim Fly model to prevent congestion.
Following the approach in [4], we discretize our selection of
virtual channels to the number of hops a message packet
has taken. In other words, for every hop i that a message
packet takes, when leaving a router, that packet uses the
ith virtual channel. Packets that take a local route and
have only one hop will always use V C0. Packets that take



Fit Fly – Multi-Rail, Multi-Plane Slim Fly
•Multi-Rail, Multi-Planar Slim Fly Network

•Planes share single set of terminals

•Each plane follows same Slim Fly network 
generation method

•Terminal to Router mapping is alternating 
mirrored on each new plane
•Increase path diversity
• Increases number of 1-hop routers

8

Slim Fly

Fit Fly



Fit Fly Validation
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•Based on previously validated 
Slim Fly Model

•Additional planes bring 
additional throughput

•Observed expected increase in 
throughput with synthetic 
uniform random traffic

•Conducted visualization tests 
to make sure all links are used 
as expected.



Workloads
• DOE Design Forward Application Traces (dumpi format)

• Algebraic MutliGrid Solver (AMG) @1728 ranks – mini-app for unstructured mesh physics that spends over 
50% of it’s time in comms.

• MultiGrid (MG)  @1000 ranks –- mini-app for adaptive mesh refinement that spends near 4% of time in comms.

• Synthetic Background
• 1000 ranks
• Uniform Random w/ mean Interval 100μs
• Varied payload size for different levels of intensity

• Compute Cluster
• All runs used upto 128 MPI ranks across 8 nodes of Intel/Xeon cluster.
• Runtimes: 18 mins wall-clock worst case for up to 35ms of simulated network traffic. 
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Application Background Intensity (% Link Bandwidth)
AMG1728 0 2 4 7.5 15 36.25 72.5*
MG1000 0 2 4 7.5 15 36.25 72.5*



Evaluated Metrics
•Maximum Communication Time

•Total amount of time spent by any one rank of the primary workload from the first 
MPI message it sends to the final message

•Average Packet Latency
•Measures how long on average packets spent in transit
•Correlated with communication time but application agnostic

•Average Hop Count
•Measures mean number of routers visited by packets in route to destination

11

These three metrics give insight into induced congestion in the networks and 
their ability to manage increasing levels of interference traffic



Compared Networks
• Slim Fly, Fit Fly, 1D Dragonfly and Megafly

12

1D Dragonfly Megafly
(Dragonfly Plus)



Compared Networks
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Fit Fly Bandwidth Considerations
•Fit Fly has distinct advantage due to its increased bandwidth and routers

•Not super fair comparison

•Configure Slim Fly and Fit Fly so that they are of comparable throughput

14

Additionally Tested Configuration Pairs

Slim Fly (12.5GiB/s) (EDR) Fit Fly (7GiB/s) (FDR)

Slim Fly (25GiB/s) (HDR) Fit Fly (12.5GiB/s) (EDR)



Experiments Overview
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Experiment Set 1
Cross Network

Experiment Set 2
Equalized Bandwidth



Cross Network – AMG1728
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Cross Network – MG1000
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Discussion: Cross Network
• Slim Fly performed well against state of the art 
Dragonfly and Megafly networks
• Possible candidate for future networks?

• Fit Fly showed great resilience to high levels of 
interference traffic
• Beat Slim Fly by an order of magnitude
• Remember Fit Fly finished in < 1 millisecond even 
at high interference

• Slim Fly and Fit Fly networks show great 
promise
• Low-diameter-high-path-diversity 
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Experiment Set 1
Cross Network



Equalized Bandwidth (12.5GiB/s) – AMG1728
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Tested Configuration Pair

Slim Fly (12.5GiB/s) Fit Fly (7GiB/s)

Note: agg. bandwith is used 
to make FF and SF more 
comparable 



Equalized Bandwidth (12.5GiB/s) – MG1000
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Tested Configuration Pair
Slim Fly (12.5GiB/s) Fit Fly (7GiB/s)



Equalized Bandwidth (25GiB/s) – AMG1728
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Tested Configuration Pair
Slim Fly (25GiB/s) Fit Fly (12.5GiB/s)



Equalized Bandwidth (25GiB/s) – MG1000
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Tested Configuration Pair
Slim Fly (25GiB/s) Fit Fly (12.5GiB/s)



Discussion: Equalized Bandwidth
• Equalizing the aggregate bandwidth across networks 
slightly reduced the advantage that Fit Fly had
• Fit Fly still pulled ahead

• Greater interference resilience

• Additional planes of routers give less chance for any 
two packets to interact
• Less interference
• Less buffer wait time
• Increased Application Performance

• More planes of cheaper routers may be a better 
option to single-plane-high-bandwidth networks

23

Experiment Set 2
Equalized Bandwidth



Conclusion & Future Work
• Slim Fly networks show promise in comparison to 
current networks designs.
• Fit Fly appears to yield better performance than Slim 
Fly for tested workloads even at higher cost

• Additional routers planes lower chance of 
interference

• Equalizing overall bandwidth throughput, additional 
planes give strong advantage

• Multi-rail, multi-plane design lead toward considering 
disaggregated SC network architectures in the future

• CODES provides a strong environment for 
answering “What If…” questions and fostering 
future innovation in the field of HPC 
interconnection networks
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Figure 1: High-level architectural differences between server-centric and resource-disaggregated datacenters.

for each resource type, interconnected by a network fabric.
Multiple prototypes of disaggregated hardware already exist
— Intel RSA [19], HP “The Machine” [13], Facebook’s Disag-
gregated Rack [8], Huawei’s DC3.0 [12], and SeaMicro [24],
as well as research prototypes like FireBox [31], soN-
UMA [51], and memory blades [46]. Many of these systems
are proprietary and/or in the early stages of development;
nonetheless, in our study we draw from what information is
publicly available to both borrow from and critically explore
the design choices made by existing hardware prototypes.

In this section, we present our assumptions regarding the
hardware (§2.1) and system (§2.2) architecture in a disaggre-
gated datacenter. We close the section by summarizing the
key open design choices that remain after our assumptions
(§2.3); we treat these as design “knobs” in our evaluation.

2.1 Assumptions: Hardware Architecture

Partial CPU-memory disaggregation. In general, disag-
gregation suggests that each blade contains one particular
resource with a direct interface to the network fabric (Fig. 1).
One exception to this strict decoupling is CPU blades: each
CPU blade retains some amount of local memory that acts
as a cache for remote memory dedicated for cores on that
blade3. Thus, CPU-memory disaggregation can be viewed as
expanding the memory hierarchy to include a remote level,
which all CPU blades share.

This architectural choice is reported in prior
work [12, 31, 46, 47]. While we assume that partial
CPU-memory disaggregation will be the norm, we go a step
further and evaluate how the amount of local memory im-
pacts network requirements in terms of network bandwidth
and latency, and transport-layer flow completion times.

Cache coherence domain is limited to a single compute

blade. As articulated by others [12, 13, 31], this has the

3We use “remote memory” to refer to the memory located on a stan-
dalone memory blade.

important implication that CPU-to-CPU cache coherence
traffic does not hit the network fabric. While partial
CPU-memory disaggregation reduces the traffic hitting the
network, cache coherence traffic can not be cached and
hence directly impacts the network. This assumption is
necessary because an external network fabric is unlikely
to support the latency and bandwidth requirements for
inter-CPU cache coherence (Table 1).

Resource Virtualization. Each resource blade must support
virtualization of its resources; this is necessary for resources
to be logically aggregated into higher-level abstractions
such as VMs or containers. Virtualization of IO resources
is widely available even today: many IO device controllers
now support virtualization via PCIe, SR-IOV, or MR-IOV
features [41] and the same can be leveraged to virtualize IO
resources in DDC. The disaggregated memory blade proto-
typed by Lim et al. [46] includes a controller ASIC on each
blade that implements address translation between a remote
CPU’s view of its address space and the addressing used
internally within the blade. Other research efforts assume
similar designs. We note that while the implementation of
such blades may require some additional new hardware, it
requires no change to existing components such as CPUs,
memory modules, or storage devices themselves.

Scope of disaggregation. Existing prototypes limit the
scope of disaggregation to a very small number of racks. For
example, FireBox [31] envisions a single system as spanning
approximately three racks and assumes that the logical

aggregation and allocation of resources is similarly scoped;
i.e., the resources allocated to a higher-level abstraction such
as a VM or a container are selected from a single FireBox.
Similarly, the scope of disaggregation in Intel’s RSA is a sin-
gle rack [19]. In contrast, in a hypothetical datacenter-scale
disaggregated system, resources assigned to (for example) a
single VM could be selected from anywhere in the datacenter.

Network designs. Corresponding to their assumed scope
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gregated Rack [8], Huawei’s DC3.0 [12], and SeaMicro [24],
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UMA [51], and memory blades [46]. Many of these systems
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nonetheless, in our study we draw from what information is
publicly available to both borrow from and critically explore
the design choices made by existing hardware prototypes.
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hardware (§2.1) and system (§2.2) architecture in a disaggre-
gated datacenter. We close the section by summarizing the
key open design choices that remain after our assumptions
(§2.3); we treat these as design “knobs” in our evaluation.

2.1 Assumptions: Hardware Architecture

Partial CPU-memory disaggregation. In general, disag-
gregation suggests that each blade contains one particular
resource with a direct interface to the network fabric (Fig. 1).
One exception to this strict decoupling is CPU blades: each
CPU blade retains some amount of local memory that acts
as a cache for remote memory dedicated for cores on that
blade3. Thus, CPU-memory disaggregation can be viewed as
expanding the memory hierarchy to include a remote level,
which all CPU blades share.

This architectural choice is reported in prior
work [12, 31, 46, 47]. While we assume that partial
CPU-memory disaggregation will be the norm, we go a step
further and evaluate how the amount of local memory im-
pacts network requirements in terms of network bandwidth
and latency, and transport-layer flow completion times.

Cache coherence domain is limited to a single compute

blade. As articulated by others [12, 13, 31], this has the
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dalone memory blade.

important implication that CPU-to-CPU cache coherence
traffic does not hit the network fabric. While partial
CPU-memory disaggregation reduces the traffic hitting the
network, cache coherence traffic can not be cached and
hence directly impacts the network. This assumption is
necessary because an external network fabric is unlikely
to support the latency and bandwidth requirements for
inter-CPU cache coherence (Table 1).

Resource Virtualization. Each resource blade must support
virtualization of its resources; this is necessary for resources
to be logically aggregated into higher-level abstractions
such as VMs or containers. Virtualization of IO resources
is widely available even today: many IO device controllers
now support virtualization via PCIe, SR-IOV, or MR-IOV
features [41] and the same can be leveraged to virtualize IO
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blade that implements address translation between a remote
CPU’s view of its address space and the addressing used
internally within the blade. Other research efforts assume
similar designs. We note that while the implementation of
such blades may require some additional new hardware, it
requires no change to existing components such as CPUs,
memory modules, or storage devices themselves.

Scope of disaggregation. Existing prototypes limit the
scope of disaggregation to a very small number of racks. For
example, FireBox [31] envisions a single system as spanning
approximately three racks and assumes that the logical

aggregation and allocation of resources is similarly scoped;
i.e., the resources allocated to a higher-level abstraction such
as a VM or a container are selected from a single FireBox.
Similarly, the scope of disaggregation in Intel’s RSA is a sin-
gle rack [19]. In contrast, in a hypothetical datacenter-scale
disaggregated system, resources assigned to (for example) a
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From Gao et al OSDI 2016.


