
© 2018 Cray Inc.

S c a l i n g I n s i g h t s t o E x a s c a l e :

A n I n t e g r a t i o n o f

S i m u l a t i o n a n d M o d e l i n g

Daniel Ernst, PhD

Senior Principal Engineer

Cray Advanced Technology

@ernstdj

linkedin.com/in/danernst/

dje@cray.com

© 2018 Cray Inc.

Performance at Scale is Cray’s Business

© 2018 Cray Inc.

• Because system design has been in progress for over a year, so we need to:

• Evaluate available compute and memory options

• Understand application scalability

• Balance complex behaviors against cost trade-offs

• Expose requirements on software and applications

Why Model Exascale?

© 2018 Cray Inc.

• Rising use of diverse workflows for science

• Increased use of AI/Analytics

• Compute and data hardware components are also diversifying

• Cray systems must enable both diversities to exist together

• Leverage full HW capabilities:

• Increase utilization

• Reduce data movement

• Simplify workflows

Enabling Exascale Science Workflows

Group
0

Group
20

Group
21

Group
22

Group
200

Flexible compute and I/O High density compute

Data

Store

Data

Store

Sparse

Matrix

Compute

Dense

Matrix

Compute

Sparse

Matrix

Compute

ML/AI

Engine

Viz

Engine

Data

Staging

Data

Preproc

Ingest

Mgmt

High-Throughput Ingest

© 2018 Cray Inc.

Problem Statement

• Systems of this scale have an immense state space

• Components:

• Multiple heterogeneous compute elements

• Memory / Storage

• Networks

• Interactions between them!

• Applications!

© 2018 Cray Inc.

• Mini-apps are a nuanced communication device

• They are NOT benchmarks

• But you can use them to estimate performance

• They express not just a point instance, but often an entire range of uses

• This range of uses is bounded largely by scientific properties

• The number of people who can comprehend this end-to-end is extremely small.

• It took us 2+ years of modeling, refining, estimating, and just plain handling of FF2 mini-
apps to understand a moderate range of how their use could map to hardware

• Even then the pool is limited to the ones we had the most success with

Understanding Applications

© 2018 Cray Inc.

Divide and Conquer

• Cracking this state space is infeasible with a unified simulation infrastructure

• Alternate approach:

• Simulate/Model things that matter in each component level

• Integrate context from other components where it’s important

• Examples:

• Model networks with traffic patterns based on application/node interactions

• Model node hardware using application parameters mimicking at-scale usage

• Model system app performance given sensitivities gleaned from node-scale

© 2018 Cray Inc.

Tackling Node-Level Insights with Sage

• Sage is an application characterization toolset that is built to expose the sensitivities of
applications to different architectures

• Focus is on modeling future “what if” architectural designs, including ISA extensions,
memory systems, NICs, thread synchronization enhancements, etc.

• Sage models performance of full node hybrid parallel apps

• (MPI + OpenMP + Vector)

• At least 256 threads on a node (SoC)

• Simulate and model real apps at full footprints at a rate that can complete in a
reasonable time (hours, not days)

• Characterize real at-scale app performance for given target architecture

• Validated using kernels with known performance attributes to verify accuracy against
hardware or calculated performance

© 2018 Cray Inc.

Network Insights for Scaling Workloads

• Cray adopted SST as our simulation platform part way
through our DesignForward program, with a focus on
studying mixed workloads:

• The impact of one application on another

• The impact of I/O traffic on applications

• The impact of how jobs are distributed over nodes

• Infrastructure has been extended with near-cycle
accurate models of Slingshot Rosetta switch as design
progressed

• SST chosen because it is performant at scale

• Systems of 65+ groups have been simulated

© 2018 Cray Inc.

• Evaluating and predicting performance

• Why are current codes/hardware performing at the level they are today?

• How fast will a future application/hardware combination run?

• Combining data with experience

• Make codes run faster

• Changes to the program, but also to software / hardware

• Calculate hundreds of performance estimates in a given year

• Don’t get to choose the programs we evaluate

• Need tools to keep them focused on where human analysis really counts

• Look for characteristics that will be the primary driving factors in future performance

Application Expertise: Cray Performance Team

© 2018 Cray Inc.

Projecting System-Level Performance

• Multi-level modeling methodology

• Component-wise calculation

• Understanding how each component
impacts each part of an application

• Analytical model combining these into
bounded-error projections

• Being wrong costs us money

• Cliff to the left

• Slope to the right

Estimation Accuracy:

Estimates Compared to Initial Results on Delivered Hardware

© 2018 Cray Inc.

App Ab Mini-app

Sim

Proxy-
arch

AbArch

App Data Arch

• Critical design elements can often use less nuanced inputs

• If you don’t have to provide depth and nuance, data is better than proxy

• Sometimes it pays to cut out the “middle men”

Experimental Science Has a Place

VS

© 2018 Cray Inc.

Memory – How Much Do We Need?

[0-0.5)

GiB/core

[0.5-1.0)

[1.0-2.0)

[2.0-4.0)

[4.0-8.0]

%

65.4%

86.8%

96.2%

99.9%

100.0%

A. Turner, and S. McIntosh-Smith. "A survey of application memory usage on a national

supercomputer: an analysis of memory requirements on ARCHER." In PMBS, IEEE/ACM

SuperComputing 2017.

© 2018 Cray Inc.

W h a t I n s i g h t s H a v e We G a i n e d ?

© 2018 Cray Inc.

• Just like compute, memory systems are becoming
more heterogeneous

• What does the system design space look like for
different memory solutions?

• How should they be combined?

• How should they be managed?

• How would applications use them?

• There is a big difference between “can we do it?”
and “should we do it?”

System Memory: Tiering Feasibility

CPU

Current
Memory

(DRAM)

Storage

(HDD)

CPU

Near Memory

(HBM)

Near Storage

(SSD)

Far Memory

(DRAM/NVRAM)

Far Storage

(HDD)

Future

© 2018 Cray Inc.

• Power is an important design characteristic

System Design Space

Note: Media power only

© 2018 Cray Inc.

• Y-axis is % of target bandwidth provided by HBM

• Note: Media power only

Tiers: Bandwidth Allocation Boundaries

HBM with DDR5 HBM with DCPMM

© 2018 Cray Inc.

Applications Guidance For Future Systems

• HBM is a required technology for both performance and power efficiency

• HBM:DDR:PCM bandwidths likely to have 100:10:1 ratio at best

• Likely better in the short term, but configurations will eventually be power
(and cost) constrained

• However, tiering configurations are likely to vary by customer

• Use cases / workflows will have big impact on these decisions

• These guidelines provide an answer, but not the answer

© 2018 Cray Inc.

Mini-Apps Tiering Readiness (from FF2)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2% 6%

10
%

14
%

18
%

22
%

26
%

30
%

34
%

38
%

42
%

46
%

50
%

54
%

58
%

62
%

66
%

70
%

74
%

78
%

82
%

86
%

90
%

94
%

98
%

P
er

ce
n

ta
ge

 o
f

to
ta

l a
cc

e
ss

e
s

Percentage of accessed pages

CoMD

RSBench

XSBench

nekbone

SNAP

lulesh

Footprint
per Rank

Top 2% pages > 70% accesses > 80% accesses > 90% accesses

CoMD 85.0 Mb 6.4% accesses 42% pages 50% pages 62% pages
RSBench 29.9 Mb 3.0% accesses 60% pages 70% pages 82% pages
XSBench 1021.9 Mb 16.6% accesses 14% pages 16% pages 18% pages
nekbone 232.7 Mb 21.5% accesses 30% pages 44% pages 68% pages
SNAP 1609.2 Mb 30.1% accesses 18% pages 40% pages 68% pages
lulesh 4171.8 Mb 29.6% accesses 38% pages 54% pages 72% pages

© 2018 Cray Inc.

Putting it All Together

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
P

e
rf

o
rm

a
n
c
e
 R

e
la

ti
v
e
 t
o
 D

D
R

-O
n
ly

Allocation/Migration Strategies for PCM and DDR on XSBench
PCM DDR

• This analysis is largely impossible without Sage, as it depends on combo of:

• Cores (ORB, prefetch)

• NoC (congestion, runtime) and Memory arch (mem parallelism)

• Software layout

© 2018 Cray Inc.

• Tiering within applications: yuck

• Bandwidth ratios quickly approaching infeasibility

• Heavy impacts on users, tools, and management (Lang’s Law)

• Tiering within workflows: yes

• Data pre-staging, Distributed Checkpoint/Restart, Data exchange for
Multiphysics

• All use cases that have typically fallen to storage

• Also has impacts on users, tools, management

• Currently seem far less invasive

Summary - Tiering

21

© 2018 Cray Inc.

How Does Your HPC Network Behave at Scale?

Your commute at 4:00 AM Your commute at rush hour

MPI Ping-Pong Latency Halo Exchange Under Load

© 2018 Cray Inc.

Performance Under Load

0

50

100

150

200

250

2
5
8

1
1
5

1
7
1

2
2
7

2
8
3

3
4
0

3
9
6

4
5
2

5
0
8

5
6
5

6
2
1

6
7
7

7
3
3

7
9
0

8
4
6

9
0
2

9
5
8

1
0
1
5

1
0
7
1

1
1
2
7

1
1
8
3

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
5

1
5
2
1

1
5
7
7

1
6
3
3

1
6
9
0

1
7
4
3

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
5

2
0
8
1

2
1
3
7

2
1
9
3

(G
b

/s
)

Simulation time (uSec)

All to All

Global Sync

Many to one

0

50

100

150

200

250

(G
b

/s
)

Average egress
BW per endpoint

Many to one

All to All

Global Sync
2 ms

Job Interference in

today’s networks

Congesting (green)

traffic hurts well-

behaved (blue) traffic,

and really hurts latency-

sensitive, synchronized

(red) traffic.

100% peak

© 2018 Cray Inc.

Slingshot Congestion Management

• Hardware automatically tracks all outstanding packets

• Knows what is flowing between every pair of endpoints

• Quickly identifies and controls causes of congestion

• Pushes back on sources… just enough

• Frees up buffer space for everyone else

• Other traffic not affected

• Avoids HOL blocking across entire fabric

• Fundamentally different than traditional ECN-based congestion control

• Fast and stable across wide variety of traffic patterns

• Suitable for dynamic HPC traffic

• Performance isolation between apps on same QoS class

• Applications much less vulnerable to other traffic on the network

• Predictable runtimes

• Lower mean and tail latency – a big benefit in apps with global
synchronization

CONGESTION

MANAGEMENT

© 2018 Cray Inc.

Congestion Management Provides Performance Isolation

0

50

100

150

200

250

2
5
8

1
1
5

1
7
1

2
2
7

2
8
3

3
4
0

3
9
6

4
5
2

5
0
8

5
6
5

6
2
1

6
7
7

7
3
3

7
9
0

8
4
6

9
0
2

9
5
8

1
0
1
5

1
0
7
1

1
1
2
7

1
1
8
3

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
5

1
5
2
1

1
5
7
7

1
6
3
3

1
6
9
0

1
7
4
3

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
5

2
0
8
1

2
1
3
7

2
1
9
3

(G
b

/s
)

Simulation time (uSec)

All to All

Global Sync

Many to one

0

50

100

150

200

250

(G
b

/s
)

Average egress
BW per endpoint

Many to one

All to All

Global Sync
2 ms

0

50

100

150

200

250

2
5
8

1
1
5

1
7
1

2
2
7

2
8
3

3
4
0

3
9
6

4
5
2

5
0
8

5
6
5

6
2
1

6
7
7

7
3
3

7
9
0

8
4
6

9
0
2

9
5
8

1
0
1
5

1
0
7
1

1
1
2
7

1
1
8
3

1
2
4
0

1
2
9
6

1
3
5
2

1
4
0
8

1
4
6
5

1
5
2
1

1
5
7
7

1
6
3
3

1
6
9
0

1
7
4
3

1
8
0
0

1
8
5
6

1
9
1
2

1
9
6
8

2
0
2
5

2
0
8
1

2
1
3
7

2
1
9
3

(G
b

/s
)

Simulation time (uSec)

All to All

Global Sync

Many to one

0

50

100

150

200

250

(G
b

/s
)

All to All

Many to one

Global Sync

Job Interference in

today’s networks

Congesting (green)

traffic hurts well-

behaved (blue) traffic,

and really hurts latency-

sensitive, synchronized

(red) traffic.

With Slingshot

Advanced

Congestion

Management

100% peak

© 2018 Cray Inc.

0

5000

10000

15000

20000

25000

100 150 200 250 300 350 400 450

La
te

n
cy

 (
n

s)

Sample time (us)

Trace Latency (10 × 30 to 1)

Low Packet Latency with Tight Distributions

Slingshot

Standard
(no congestion control)

Mix of background
applications running,
some of which are
causing congestion.

© 2018 Cray Inc.

GPCNeT: Random Ring Latency Congestion Test

160.6

14.4

1.6

8.7

1.8

1.8

0 20 40 60 80 100 120 140 160 180

Slingshot 126 Nodes, 20 Ranks / Node Mellanox EDR 64 Nodes, 36 Ranks / Node

Average
Unloaded

Latency (s)

Average
Latency with
Congestion

load (s)

Tail Latency with
Congestion:

99% of packets
lower than this (s)

© 2018 Cray Inc.

• Ingredients:

• Architectural parameters deemed
relevant to applications

• Network parameters gleaned from at-
scale simulation of relevant patterns

• Application sensitivities to a range of
parameters for given input sets

• This last part is – for now – mostly a
human element

• Knowing what is and isn’t relevant to a
given application/architecture
combination isn’t easily automated

Combinational Modeling at System Scale

Code Baseline 1/2 BW 1.5x Cores

1.5x Cores

1/2 BW

AMG 159.6 84.3 159.6 84.3

BDAS 664.9 642.2 977.5 931.4

HACC 50.0 50.0 75.0 75.0

Kripke 288.6 148.3 288.6 148.3

LAMMPS 268.5 257.3 268.5 257.3

MLDL 352.9 259.6 445.5 306.5

Nekbone 83.6 42.1 83.6 42.1

PENNANT 68.9 53.7 68.9 53.7

QMCPACK 26.9 21.2 33.9 25.2

Quicksilver 16.9 13.3 21.7 16.1

GEOMEAN 114.3 83.8 132.8 95.5

© 2018 Cray Inc.

• Cray’s performance modeling expertise is in production targeting Exascale

• Ongoing use in refining estimates and architectures

• Continues to contribute to development of Slingshot network

• Long-term investment in modeling node and network technologies had to be
combined with developing application expertise in order to be successful

• aka this requires deep partnership with customers, which Cray (and DOE!)
has invested in heavily

Summary

THANK YOU

Q U E S T I O N S ?

@ernstdj

linkedin.com/in/danernst/

dje@cray.com

