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Outline

What the heck is Project 38?

How is Project 38 using ModSim?

Why is ModSim valuable?



Project 38 is a team effort



Background
September 2016 meeting(s) with HPC experts, held to discuss/respond to the June 

2016 announcement of China’s TaihuLight supercomputer, reached the following 

consensus (a report [1] is available):

• The HPC technology ecosystem is changing in ways that are less favorable to HPC

• There are national security implications to this change

• Leadership in innovative architectures is critical

• Joint architectural explorations might be useful and interesting

September 2017 technical deep dive plus follow on meetings, VTC, telecons

Improved understanding of key applications

Specialized architecture development process and examples

Possible architectures and applications of interest

Value proposition for collaborating

Refinement of exploration space and exploration process

Joint explorations/collaborations on purpose built architectures have promise

It requires a new approach to exploring and developing HPC systems

Project 38 is an attempt to define this new approach

[1] https://www.nitrd.gov/nitrdgroups/images/b/b4/NSA_DOE_HPC_TechMeetingReport.pdf



Project 38 at a glance 

Project 38 is a set of vendor-agnostic architectural explorations involving NSA, the 

DOE Office of Science, and NNSA (these latter 2 organizations are referred to below 

as “DOE”).  These explorations are expected to accomplish the following:

Near-term goal: Quantify the performance value and identify the potential costs of 

specific architectural concepts against a limited set of applications of interest to both 

the DOE and NSA.

Long-term goal:  Develop an enduring capability for DOE and NSA to jointly explore 

architectural innovations and quantify their value.



High level guidelines

Improvements in data access are the initial focus for architectural ideas and 

applications – primarily on the node

Cost-benefit analysis

Baseline comparison is to expected roadmaps/ECP+ (business as usual)

Primarily a performance comparison

“Cost” is adverse changes to programming models, SW stacks, etc.



Milestones
2018 Quantify the benefits of the explorations

ModSim is the primary exploration path

2019 Complete the existing explorations -- define the primary SW issues

Document the results

2020 Improve cost-benefit analyses

Push best ideas towards implementation
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Application Kernels
1D FFT

HPC Challenge benchmark

Kripke

Kunen et al, “Kripke – A massively parallel transport mini-app”, American 

Nuclear Society M&C, April 2015.

HPGMG

Adams et al, “HPGMG 1.0: A benchmark for ranking high performance 

computing systems,” Tech report, hpgmg.org, 2014.

Tensor Contraction Engine

Baumgartner et al, “Synthesis of High-Performance Parallel Programs for a 

Class of Ab Initio Quantum Chemistry Models,” Proceedings of the IEEE, Feb 2005.

PIC codes, represented by PICSAR

picsar.net

HipMer

Georganas et al, “MerBench: PGAS benchmarks for High Performance Genome 

Assembly,” PAW17, November 2017.

Sparse Matrix Trisolve and other common sparse matrix operations



Architectural ideas
Word Granularity Scratchpad Memory

DRE and DRE (?)

Message Queues

Scatter/Gather

Remote Atomics

Fixed Function Accelerators

Word Granularity Scratchpad Memory:
Gather-scatter within processor tile 

more effective SIMD

Data Recoding Engine
Sub-word granularity

Handles branch-heavy code (avg. 20x improvement over using processor core)

Hardware Message Queues (with atomic queue/dequeue)
Gather-scatter between processor tiles

Async between tiles to eliminate overhead of barriers
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sized for memory latency,
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PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);
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ModSim tools used

Higher level architectural exploration



Empirical GPP Roofline on KNL

More ModSim tools used
lower level design explorations

 Performance Counters…
• Full apps in distributed memory

• DRAM, Cache, FPU, IPC Performance Counters w/LIKWID, 
VTune, NVProf

• x86, KNL, NVIDIA GPU support 

 Analytic Modeling

 Code Analysis: ExaSAT (code opt design space)

 SRAM Model: Cacti and p-Cacti for sub-22nm

 Microsoft Excel

 Roofline Model (+roofline advisor)
• x86, KNL, and GPU support

• Multilevel hierarchy, Multi-bottleneck analysis, stride-k access, 
divides, …

 Simulation & Instrumentation…
• Kernels (trade speed for detail)

• Cache Simulator: SDE (Intel Advisor, x86)

• Core: Chisel “Spike” simulator and Verilator

• NOC Model: OpenSoC + BookSim for Parameter sweeps

 Emulation (Chisel HW Generators)

 FPGA and synthesis
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Scala

Chisel

Open Source Extensible ISA/Cores Open Source fabric
To integrate accelerators

And logic into SOC

DSL for rapid prototyping
of circuits, systems, and 

arch simulator components

Platform for experimentation 
Parameterized hardware generation

Back-end to synthesize
HW with different devices

Or new logic families

Re-implement processor
With different devices or
Extend w/accelerators
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Scatter/Gather results

Simple IPC Calculation
Lots of caveats

Effect 1:  Reduce $ Misses
Assume covered L1 misses become hits

13-40% IPC improvement

Effect 2: Integer offload
Assume half of address-calc integer operations 
are offloaded, require 0.1 cycles (vs. 0.4)

17-44% IPC Improvement

Effect 3: Improved $ performance
If covered cache accesses go to scratchpad, 
other accesses more efficient? 
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Here’s a great idea!
Scatter/Gather

Could have a substantial positive impact on performance

Possible to identify regions amenable to lots of in-memory 

operations, high reuse,  good compaction

Good progress on design (DRE work) – high feasibility

Word-Granularity Scratchpad

Can reduce post-$ accesses / make better use of cache

Not useful for all apps (Kripke, XSBench?)

Verdict: Combine them!

Focus on S/G

Target Arch: S/G to/from scratchpad 

Option: w/ HW Synchronization 

Option: w/ Recoding engine

Combine!



High level results

Three Architectures

Scatter-Gather: Good body of evidence for performance, programmability, good 

foundation for design

Word-granularity Scratchpad: Some evidence for improved performance, 

programmability

Atomics: Chicken-and-Egg, coherency issues, need better application drivers

Benefit Scatter/Gather
Word-granularity 

Scratchpad

Kripke Good >20% Not Word-Gran

hpgmg Good >15% Ongoing

XSBench Good >28% Mild?



Additional value of ModSim

Detailed knowledge transfer

OCCAM

Extension of knowledge

Classified/unclassified boundaries

Proprietary/open boundaries



Thanks!

Special thanks to Arun Rodrigues and John Shalf

Project 38

Happy Birthday Bob Mrosky!


