Simulation by Composition:
Using models as building blocks to enable

simulation of complex node architectures

" NPT T
v *

PRESENTED BY

Gwen Voskuilen

@kiieicy NISA

———

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
SAND2019-9588C



» | Architecture innovations drive models

> As scaling slows, architectures become more creative
> Instead of just bigger

° Increasingly complex

> Heterogeneous processors, GPUs, other accelerators

> Processing at memory and/or throughout cache hierarchy
o Customization

ov60 V60085 965074V
5
Vioo7E2 THOO78 0939

HEMBTOOVOMTR-OEM

. Top: Google TPU
| Middle: Apple A12 SoC
| Bottom: AMD

o Simulation:

> The more “stuff”’ to simulate, the slower it gets
> New models, not just scaling existing ones

Architecture trends are leading to slower development of slower simulations



3 | Impact of Complexity in Node Models

> Complex models are difficult to work with
> Noisy, masks cause & effect

> Difficult to debug
> Slow

> Often models are tightly integrated
> Modifying the model becomes complex
> E.g., pervasive assumptions about caching or address mapping



+ I Approaches

o Simpler simulators
o Faster simulation

° Less accurate
> What can be simplified is problem dependent = makes reuse difficult

> Accept the complexity
> Slow simulation
> Slower

> More accurate (?)
> Complex models are hard to validate

> Or, build composable models



s | Composability is Key

“A highly composable system provides components that can be selected and
assembled in various combinations to satisfy specific user requirements”

-Wikipedia

> Benefits
> Rapid creation of new architectures
> Minimize the work to explore new concepts
> Only add/modify the new parts

> Minimal disturbance to existing infrastructure

° Tune tradeoff between fidelity and simulation overhead
to specific instances

o E.g., simplify the core model, keep the caches detailed
> OR simplify the cache hierarchy and use detailed core models



s I Composability makes research better e
° Fair comparisons from point changes !g

> Single change between base system and comparison point

> E.g., swap prefetch model at runtime without disturbing any other part of the simulation

> Validating models is time consuming but necessary
> Breaks much of validation into manageable chunks

> Create new systems in which many of the pieces have already been validated

S
) o 4
v

> Workflow benefits
> Continuous path from high-level to detailed models

° Build hierarchically

> Collaborative development



7 I Achieving composability

> Defined APIs between classes of components

o Cores and caches

° Instruction stream and pipeline model

> Must be flexible enough to adapt to future ideas

> Hard part

o Fast simulation

> Leveraging composable model properties to facilitate parallel simulation

o Capture, synchronize interactions between models

> Enable seamless transition from fast low-detail models to slow high-detail ones

ROUTER

A
o
RS
~
W
<

-

TRAFFIC GENERATOR

l

&

39

CACHE



8 ‘ Composability versus interoperability

GRS

Stand-alone Interoperable Composable

> Many simulators support interoperability
> Bridge between simulators

> Problemes:
o Interface is often simulator-specific = rewritten for every integration
> Inflexible because not written to be generic
> Models can rely on information not encoded in their interface API

> E.g., one simulator expects in-order requests, other breaks that, first one has problems!



9 I The Challenges of Composability

> Inefficiencies
° Engineering overhead to design models to existing APls and build APIs into models
> Code/runtime overhead from designing models to APIs
> Must be careful to build API such that it is flexible but doesn’t impose too much burden
> Have to work through APIs instead of around them
> No shortcuts

> Never completely sufficient
° Interfaces unable to capture arbitrary future ideas
> Always be a need to hack simulators




Composable Node Models in
SST

L I I . .. Tl HE I I I



The Structural Simulation Toolkit
Goals

* Create a standard architectural simulation
framework for HPC

* Ability to evaluate future systems on DOE/DOD
workloads

» Use supercomputers to design supercomputers

Technical Approach
* Parallel
* Parallel Discrete Event core with conservative
optimization over MPI/Threads
* Interoperability
* Node: memory, cores, caches, NoCs
* System: routers, NICs, schedulers
* Multi-scale
* Detailed and simple models that interoperate
* Open
* Open Core, non-viral, modular

Status
e Parallel framework (SST Core)
* Integrated libraries of components (Elements)

e Current Release (9.0)
 https://sst-simulator.org
* https://github/sstsimulator

Consortium l I
* “Best of Breed” simulation suite L

* Combine Lab, Academic & Industry

A\ARE h OAK NM ?_—_=__=
ﬁ Rll)( I §h"]|;)é\iz E = ::

NM f==aAv4V7|cron @ <D

Mellanox NVIDIA.

® 0 ARM




Key Capabilities

> Parallel
> Built from the ground up to be scalable

> Conservative, distance-based optimization
> MPI + Threads

> Flexible

> Enables “mix and match” of simulation components
> Custom architectures

> Multiscale tradeoff between accuracy and simulation time
> E.g., cycle-accurate network with trace-driven endpoints

- Open API

> Easily extensible with new models, modular framework and open source




13 I SST Building Blocks

> SST simulations are comprised of connected by
> Components communicate by sending over the links
> Components define which are valid connection points for a link
> Components can use and to expose composable
functionality internally
Component / . ,\ Component . ,\ Component
Core \j Link Cache Link l/ NoC Router
SubComponent
Prefetcher x
E

Component / Link ,\ Component /
Core \j

,\ Component

/ Cache \/ Link / NoC Router




14 1 SST Architecture

o SST Framework
> The backbone of simulation, parallel, high-performance, multi-threaded

> Provides utilities and interfaces for simulation components (models)
> Clocks, event exchange, statistics and parameter management, parallelism support, etc.

o SST libraries
> Libraries of components that perform the actual simulation
> Elements include processors, memory, network, etc.
> Compatible with many existing simulators: DRAMSim2, HMCSim, Spike, Ramulator, etc.

Component

Component

Component

Component

SST Core




Breadth and Depth...

Detailed Caches

Multiscale Memory Models

Dynamic Trace-based Processors
Functional Processors

High-level Program
Communication Models

Cycle-based Networks

High-level System Workflows

memHierarchy
cassini
CRAMSIim
NVDIMMSim
GoblinHMC
SimpleDRAM

o ariel

MacSim
GPGPUSIm
Spike
ember
firefly
hermes
merlin
kingsley
scheduler

- Cache and memory

- Prefetchers

- DDR, HBM

- Emerging Memories

- HMC

- Low-fidelity DDR model

- PIN-based tracing

- GPGPU

- GPGPU

- RISC-V ISA

- State-machine message generation
- Communication protocols

- MPI-like interface

- Network router model and NIC
- Network-on-chip model

- Job-scheduler simulation models



16 ‘ Composable Node Modeling in SST: Building bigger models

bus = sst.Component(“bus”, “lib.bus”)

for x in range(0,4):
core = sst.Component(“core” + str(x), “lib.cpu”)
11 = sst.Component(“L1 ” + str(x), “lib.cache”)
link = sst.Link(“core_to _cache ” + str(x)
link.connect(core, 11)
linkb = sst.Link(“cache_to bus ” + str(x)
linkb.connect(bus, 11)

12 @ = sst.Component(“L2_©”, “lib.cache”)
= sst.Component(“L2_1”, “lib.cache”)

—

N

=
|

—
.
>
=~
©
Il

sst.Link(“bus_to 12 ©”)

Linkl = sst.Link(“bus_to_12 1) i
Link®@.connect(bus, 12 0)

Linkl.connect(bus, 12 1)



17 ‘ Composable Node Modeling in SST: Building deeper models

> SubComponent
> Slot in a component for loading some function

> Example: cache replacement policy

Replacement Policy

Prefetcher

Cache
Custom o Customizable model outlines

Hash Function
instruction

handler

> Subcomponents can live in any library; allows
users to customize without hacking the
component

> Enables
o Hierarchical models

o Successive refinement

> Model re-use




18 I SST: Future directions in node modeling

° Increasing composability within existing node models
o Accelerator interfaces in core models

> Expanded support for drop-in addition of custom instructions

> Support for composing RTL models with C++ models

> Growing the eco-system



19 I Revisiting the composability challenges

> Component/SubComponent APIs designed to be lightweight
> Minimize runtime overheads

> While enabling SST Core to manage parallel execution between components
> Benefit from forcing components to interact through APls

° Interfaces
> Network

> Memory (core €2 cache/memory)



20 | Closing thoughts

o Architectures are evolving quickly = slower simulation e | [ Compne | | Compas
Vi
° Building simulations out of composable pieces Rowe
> Amortizes investment in simulation infrastructure | gy 1l G |
> Speeds up innovation T [0 o [ ||| o o o [ ]
o Reduces the Validation burden |C0re||Core| Core Corel Core Core| Core Core|

&j t&
—,E_ Ariel Trace Capture 1

PIN

Tile
@ HMC
@ DDR
[L1](L1]
T~ _—




)

Sandia
National
Laboratories



