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Architecture innovations drive models2

◦ As scaling slows, architectures become more creative 
◦ Instead of just bigger
◦ Increasingly complex

◦ Heterogeneous processors, GPUs, other accelerators
◦ Processing at memory and/or throughout cache hierarchy
◦ Customization

◦ Simulation: 
◦ The more “stuff” to simulate, the slower it gets
◦ New models, not just scaling existing ones

Architecture trends are leading to slower development of slower simulations

Top: Google TPU
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Impact of Complexity in Node Models3

◦ Complex models are difficult to work with
◦ Noisy, masks cause & effect
◦ Difficult to debug
◦ Slow

◦ Often models are tightly integrated
◦ Modifying the model becomes complex

◦ E.g., pervasive assumptions about caching or address mapping



Approaches4

◦ Simpler simulators
◦ Faster simulation
◦ Less accurate
◦ What can be simplified is problem dependent à makes reuse difficult

◦ Accept the complexity
◦ Slow simulation
◦ Slower
◦ More accurate (?)

◦ Complex models are hard to validate

◦ Or, build composable models



Composability is Key5

“A highly composable system provides components that can be selected and 
assembled in various combinations to satisfy specific user requirements”

-Wikipedia

◦ Benefits
◦ Rapid creation of new architectures
◦ Minimize the work to explore new concepts

◦ Only add/modify the new parts
◦ Minimal disturbance to existing infrastructure

◦ Tune tradeoff between fidelity and simulation overhead
to specific instances
◦ E.g., simplify the core model, keep the caches detailed
◦ OR simplify the cache hierarchy and use detailed core models



Composability makes research better6

◦ Fair comparisons from point changes
◦ Single change between base system and comparison point
◦ E.g., swap prefetch model at runtime without disturbing any other part of the simulation

◦ Validating models is time consuming but necessary
◦ Breaks much of validation into manageable chunks
◦ Create new systems in which many of the pieces have already been validated

◦ Workflow benefits
◦ Continuous path from high-level to detailed models

◦ Build hierarchically
◦ Collaborative development
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Achieving composability7

◦ Defined APIs between classes of components
◦ Cores and caches
◦ Instruction stream and pipeline model
◦ Must be flexible enough to adapt to future ideas

◦ Hard part

◦ Fast simulation
◦ Leveraging composable model properties to facilitate parallel simulation

◦ Capture, synchronize interactions between models
◦ Enable seamless transition from fast low-detail models to slow high-detail ones
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Composability versus interoperability8

◦ Many simulators support interoperability
◦ Bridge between simulators
◦ Problems:

◦ Interface is often simulator-specific à rewritten for every integration
◦ Inflexible because not written to be generic

◦ Models can rely on information not encoded in their interface API
◦ E.g., one simulator expects in-order requests, other breaks that, first one has problems!

ComposableInteroperableStand-alone



The Challenges of Composability9

◦ Inefficiencies
◦ Engineering overhead to design models to existing APIs and build APIs into models
◦ Code/runtime overhead from designing models to APIs

◦ Must be careful to build API such that it is flexible but doesn’t impose too much burden
◦ Have to work through APIs instead of around them

◦ No shortcuts

◦ Never completely sufficient
◦ Interfaces unable to capture arbitrary future ideas

◦ Always be a need to hack simulators



Composable Node Models in 
SST



Goals
• Create a standard architectural simulation 

framework for HPC
• Ability to evaluate future systems on DOE/DOD 

workloads
• Use supercomputers to design supercomputers

Status
• Parallel framework (SST Core) 
• Integrated libraries of components (Elements)
• Current Release (9.0)
• https://sst-simulator.org
• https://github/sstsimulator

Technical Approach
• Parallel
• Parallel Discrete Event core with conservative 

optimization over MPI/Threads
• Interoperability
• Node: memory, cores, caches, NoCs
• System: routers, NICs, schedulers

• Multi-scale
• Detailed and simple models that interoperate

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

The Structural Simulation Toolkit



Key Capabilities

◦ Parallel
◦ Built from the ground up to be scalable
◦ Conservative, distance-based optimization
◦ MPI + Threads

◦ Flexible
◦ Enables “mix and match” of simulation components
◦ Custom architectures
◦ Multiscale tradeoff between accuracy and simulation time

◦ E.g., cycle-accurate network with trace-driven endpoints

◦ Open API
◦ Easily extensible with new models, modular framework and open source



SST Building Blocks13

◦ SST simulations are comprised of components connected by links

◦ Components communicate by sending events over the links
◦ Components define ports which are valid connection points for a link

◦ Components can use subComponents and modules to expose composable 
functionality internally
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SST Architecture14

◦ SST Core Framework
◦ The backbone of simulation, parallel, high-performance, multi-threaded
◦ Provides utilities and interfaces for simulation components (models)

◦ Clocks, event exchange, statistics and parameter management, parallelism support, etc.

◦ SST Element libraries
◦ Libraries of components that perform the actual simulation
◦ Elements include processors, memory, network, etc.
◦ Compatible with many existing simulators: DRAMSim2, HMCSim, Spike, Ramulator, etc.
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Breadth and Depth…

◦ memHierarchy - Cache and memory
◦ cassini - Prefetchers
◦ CRAMSim - DDR, HBM
◦ NVDIMMSim - Emerging Memories
◦ GoblinHMC - HMC
◦ SimpleDRAM - Low-fidelity DDR model
◦ ariel - PIN-based tracing
◦ MacSim - GPGPU
◦ GPGPUSim - GPGPU
◦ Spike - RISC-V ISA 
◦ ember - State-machine message generation
◦ firefly - Communication protocols
◦ hermes - MPI-like interface
◦ merlin - Network router model and NIC
◦ kingsley - Network-on-chip model
◦ scheduler - Job-scheduler simulation models

Detailed Caches

Dynamic Trace-based Processors

Functional Processors

High-level Program 
Communication Models

Cycle-based Networks

High-level System Workflows

Multiscale Memory Models



Composable Node Modeling in SST: Building bigger models16

core0 core1 core2 core3

bus = sst.Component(“bus”, “lib.bus”)

for x in range(0,4):
core = sst.Component(“core” + str(x), “lib.cpu”)
l1 = sst.Component(“L1_” + str(x), “lib.cache”)
link = sst.Link(“core_to_cache_” + str(x)
link.connect(core, l1)
linkb = sst.Link(“cache_to_bus_” + str(x)
linkb.connect(bus, l1)

l2_0 = sst.Component(“L2_0”, “lib.cache”)
l2_1 = sst.Component(“L2_1”, “lib.cache”)

Link0 = sst.Link(“bus_to_l2_0”)
Link1 = sst.Link(“bus_to_l2_1”)
Link0.connect(bus, l2_0)
Link1.connect(bus, l2_1)

L1_0 L1_1 L1_2 L1_3

bus

L2_0 L2_1



Composable Node Modeling in SST: Building deeper models17

◦ SubComponent
◦ Slot in a component for loading some function
◦ Example: cache replacement policy
◦ Subcomponents can live in any library; allows 

users to customize without hacking the 
component

◦ Enables
◦ Hierarchical models

◦ Successive refinement
◦ Customizable model outlines
◦ Model re-use
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SST: Future directions in node modeling18

◦ Increasing composability within existing node models
◦ Accelerator interfaces in core models
◦ Expanded support for drop-in addition of custom instructions

◦ Support for composing RTL models with C++ models

◦ Growing the eco-system



Revisiting the composability challenges19

◦ Component/SubComponent APIs designed to be lightweight
◦ Minimize runtime overheads
◦ While enabling SST Core to manage parallel execution between components

◦ Benefit from forcing components to interact through APIs

◦ Interfaces
◦ Network
◦ Memory (core ßà cache/memory)



Closing thoughts20

◦ Architectures are evolving quickly è slower simulation

◦ Building simulations out of composable pieces 
◦ Amortizes investment in simulation infrastructure
◦ Speeds up innovation
◦ Reduces the validation burden
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