
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-9588C

Simulation by Composition:
Using models as building blocks to enable
simulation of complex node architectures

Gwen Vosku i len

1

Architecture innovations drive models2

◦ As scaling slows, architectures become more creative
◦ Instead of just bigger
◦ Increasingly complex

◦ Heterogeneous processors, GPUs, other accelerators
◦ Processing at memory and/or throughout cache hierarchy
◦ Customization

◦ Simulation:
◦ The more “stuff” to simulate, the slower it gets
◦ New models, not just scaling existing ones

Architecture trends are leading to slower development of slower simulations

Top: Google TPU
Middle: Apple A12 SoC
Bottom: AMD

Impact of Complexity in Node Models3

◦ Complex models are difficult to work with
◦ Noisy, masks cause & effect
◦ Difficult to debug
◦ Slow

◦ Often models are tightly integrated
◦ Modifying the model becomes complex

◦ E.g., pervasive assumptions about caching or address mapping

Approaches4

◦ Simpler simulators
◦ Faster simulation
◦ Less accurate
◦ What can be simplified is problem dependent à makes reuse difficult

◦ Accept the complexity
◦ Slow simulation
◦ Slower
◦ More accurate (?)

◦ Complex models are hard to validate

◦ Or, build composable models

Composability is Key5

“A highly composable system provides components that can be selected and
assembled in various combinations to satisfy specific user requirements”

-Wikipedia

◦ Benefits
◦ Rapid creation of new architectures
◦ Minimize the work to explore new concepts

◦ Only add/modify the new parts
◦ Minimal disturbance to existing infrastructure

◦ Tune tradeoff between fidelity and simulation overhead
to specific instances
◦ E.g., simplify the core model, keep the caches detailed
◦ OR simplify the cache hierarchy and use detailed core models

Composability makes research better6

◦ Fair comparisons from point changes
◦ Single change between base system and comparison point
◦ E.g., swap prefetch model at runtime without disturbing any other part of the simulation

◦ Validating models is time consuming but necessary
◦ Breaks much of validation into manageable chunks
◦ Create new systems in which many of the pieces have already been validated

◦ Workflow benefits
◦ Continuous path from high-level to detailed models

◦ Build hierarchically
◦ Collaborative development

Functional

Cycle

RTL

Achieving composability7

◦ Defined APIs between classes of components
◦ Cores and caches
◦ Instruction stream and pipeline model
◦ Must be flexible enough to adapt to future ideas

◦ Hard part

◦ Fast simulation
◦ Leveraging composable model properties to facilitate parallel simulation

◦ Capture, synchronize interactions between models
◦ Enable seamless transition from fast low-detail models to slow high-detail ones

DIMM
ROUTER

N
ET

W
O

RK

TRAFFIC GENERATOR

CPU

$$

CACHE

Composability versus interoperability8

◦ Many simulators support interoperability
◦ Bridge between simulators
◦ Problems:

◦ Interface is often simulator-specific à rewritten for every integration
◦ Inflexible because not written to be generic

◦ Models can rely on information not encoded in their interface API
◦ E.g., one simulator expects in-order requests, other breaks that, first one has problems!

ComposableInteroperableStand-alone

The Challenges of Composability9

◦ Inefficiencies
◦ Engineering overhead to design models to existing APIs and build APIs into models
◦ Code/runtime overhead from designing models to APIs

◦ Must be careful to build API such that it is flexible but doesn’t impose too much burden
◦ Have to work through APIs instead of around them

◦ No shortcuts

◦ Never completely sufficient
◦ Interfaces unable to capture arbitrary future ideas

◦ Always be a need to hack simulators

Composable Node Models in
SST

Goals
• Create a standard architectural simulation

framework for HPC
• Ability to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Status
• Parallel framework (SST Core)
• Integrated libraries of components (Elements)
• Current Release (9.0)
• https://sst-simulator.org
• https://github/sstsimulator

Technical Approach
• Parallel
• Parallel Discrete Event core with conservative

optimization over MPI/Threads
• Interoperability
• Node: memory, cores, caches, NoCs
• System: routers, NICs, schedulers

• Multi-scale
• Detailed and simple models that interoperate

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

The Structural Simulation Toolkit

Key Capabilities

◦ Parallel
◦ Built from the ground up to be scalable
◦ Conservative, distance-based optimization
◦ MPI + Threads

◦ Flexible
◦ Enables “mix and match” of simulation components
◦ Custom architectures
◦ Multiscale tradeoff between accuracy and simulation time

◦ E.g., cycle-accurate network with trace-driven endpoints

◦ Open API
◦ Easily extensible with new models, modular framework and open source

SST Building Blocks13

◦ SST simulations are comprised of components connected by links

◦ Components communicate by sending events over the links
◦ Components define ports which are valid connection points for a link

◦ Components can use subComponents and modules to expose composable
functionality internally

Component
Core

Component
Cache

Component
Core

Component
Cache

Component
NoC Router

Component
NoC Router

Link Link

LinkLink

Li
nk

SubComponent
Prefetcher

SST Architecture14

◦ SST Core Framework
◦ The backbone of simulation, parallel, high-performance, multi-threaded
◦ Provides utilities and interfaces for simulation components (models)

◦ Clocks, event exchange, statistics and parameter management, parallelism support, etc.

◦ SST Element libraries
◦ Libraries of components that perform the actual simulation
◦ Elements include processors, memory, network, etc.
◦ Compatible with many existing simulators: DRAMSim2, HMCSim, Spike, Ramulator, etc.

SST Core

Co
m

po
ne

nt

Co
m

po
ne

nt

Co
m

po
ne

nt

Co
m

po
ne

nt

Breadth and Depth…

◦ memHierarchy - Cache and memory
◦ cassini - Prefetchers
◦ CRAMSim - DDR, HBM
◦ NVDIMMSim - Emerging Memories
◦ GoblinHMC - HMC
◦ SimpleDRAM - Low-fidelity DDR model
◦ ariel - PIN-based tracing
◦ MacSim - GPGPU
◦ GPGPUSim - GPGPU
◦ Spike - RISC-V ISA
◦ ember - State-machine message generation
◦ firefly - Communication protocols
◦ hermes - MPI-like interface
◦ merlin - Network router model and NIC
◦ kingsley - Network-on-chip model
◦ scheduler - Job-scheduler simulation models

Detailed Caches

Dynamic Trace-based Processors

Functional Processors

High-level Program
Communication Models

Cycle-based Networks

High-level System Workflows

Multiscale Memory Models

Composable Node Modeling in SST: Building bigger models16

core0 core1 core2 core3

bus = sst.Component(“bus”, “lib.bus”)

for x in range(0,4):
core = sst.Component(“core” + str(x), “lib.cpu”)
l1 = sst.Component(“L1_” + str(x), “lib.cache”)
link = sst.Link(“core_to_cache_” + str(x)
link.connect(core, l1)
linkb = sst.Link(“cache_to_bus_” + str(x)
linkb.connect(bus, l1)

l2_0 = sst.Component(“L2_0”, “lib.cache”)
l2_1 = sst.Component(“L2_1”, “lib.cache”)

Link0 = sst.Link(“bus_to_l2_0”)
Link1 = sst.Link(“bus_to_l2_1”)
Link0.connect(bus, l2_0)
Link1.connect(bus, l2_1)

L1_0 L1_1 L1_2 L1_3

bus

L2_0 L2_1

Composable Node Modeling in SST: Building deeper models17

◦ SubComponent
◦ Slot in a component for loading some function
◦ Example: cache replacement policy
◦ Subcomponents can live in any library; allows

users to customize without hacking the
component

◦ Enables
◦ Hierarchical models

◦ Successive refinement
◦ Customizable model outlines
◦ Model re-use

Cache

Replacement Policy

Hash Function

Prefetcher Observer

Coherence
Port manager

Custom
instruction

handler

SST: Future directions in node modeling18

◦ Increasing composability within existing node models
◦ Accelerator interfaces in core models
◦ Expanded support for drop-in addition of custom instructions

◦ Support for composing RTL models with C++ models

◦ Growing the eco-system

Revisiting the composability challenges19

◦ Component/SubComponent APIs designed to be lightweight
◦ Minimize runtime overheads
◦ While enabling SST Core to manage parallel execution between components

◦ Benefit from forcing components to interact through APIs

◦ Interfaces
◦ Network
◦ Memory (core ßà cache/memory)

Closing thoughts20

◦ Architectures are evolving quickly è slower simulation

◦ Building simulations out of composable pieces
◦ Amortizes investment in simulation infrastructure
◦ Speeds up innovation
◦ Reduces the validation burden

Tile

HMC

DDR

C C

L1 L1

L2

L3Core

Mem

Core

L3

Core

Core

Core
Core

Core

Core

L3

L3

L3

L3

L3

L3

Mem

Mem

Mem

Core

L1

L2

