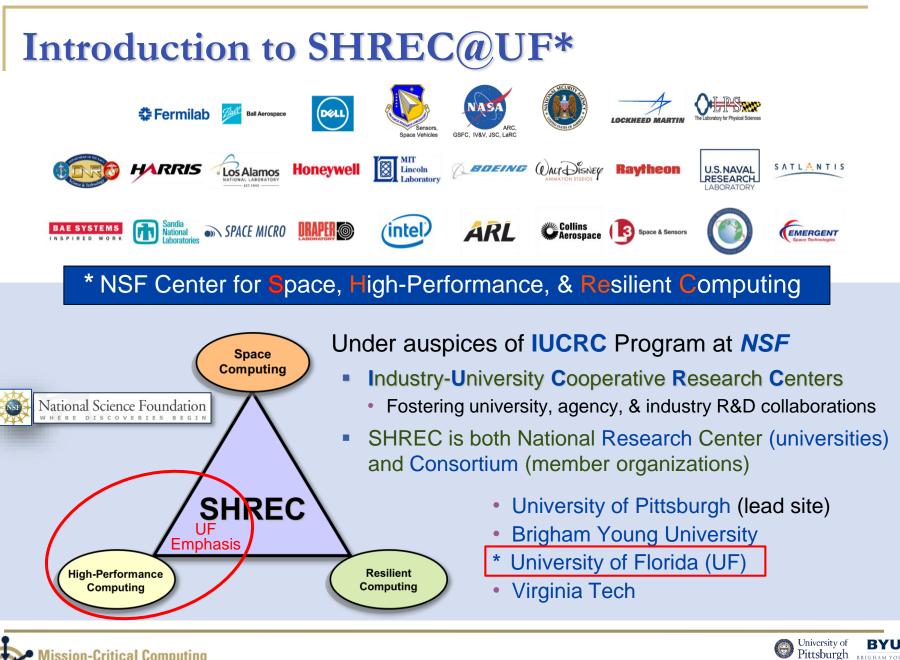
Compute Cache Architecture for the Acceleration of Mission-Critical Data Analytics

Mission-Critical Computing **NSF CENTER FOR SPACE, HIGH-PERFORMANCE,** ND RESILIENT COMPUTING (SHREC)

Dr. Herman Lam

UF Site Director

Dr. David Ojika


Post Doctoral Associate

Sharath Bhat Karthikeyan Rajasekaran Vishnu Srinivasan

Research Assistants

NSF Center for Space, **High-Performance, and Resilient** Computing (SHREC)

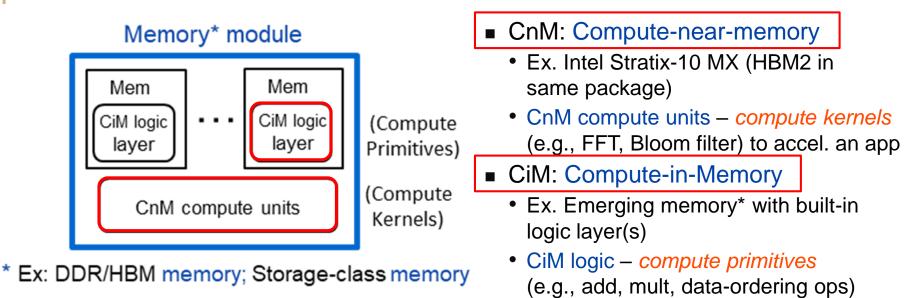
University of Florida

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

- Overview: Compute caches
 - Compute near Memory (CnM), Compute in Memory (CiM):
- System-level ModSim of heterogeneous HPC systems
 - Foundation of our approach
 - Approach: deployed, near-future, future heterogeneous HPC systems
 - Role of compute caches in SLAMS* of such systems
- Current progress
 - Experimental platform:
 - Bittware 520N-MX, Intel Stratix 10 MX FPGA
 - Case study
 - In preparation for Bittware board
 - Preliminary results

University of

Pittsburgh


Tech

RYI

Introduction: CnM and CiM

Approach: Combination of experimental and ModSim studies

- R&D Thrust 1: Amplify the acceleration capabilities of FPGAs (CnM processing)
 - FPGA + (Mem w/ low-latency, high-bandwidth); e.g., larger MatMult, FFTs, DNN training
- R&D Thrust 2: System-level ModSim of heterogeneous HPC systems
 - Ex: Emerging HPC system: Some combination (CPU, accelerators, compute cache**)

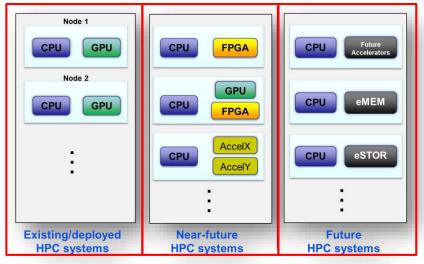
- Overview: Compute caches
 - Compute near Memory (CnM), Compute in Memory (CiM):
- System-level ModSim of heterogeneous HPC systems
 - Foundation of our approach
 - Approach: deployed, near-future, future heterogeneous HPC systems
 - Role of compute caches in SLAMS* of such systems
- Current progress
 - Experimental platform:
 - Bittware 520N-MX, Intel Stratix 10 MX FPGA
 - Case study
 - In preparation for Bittware board
 - Preliminary results

University of

Pittsburgh

Virginia

RYU

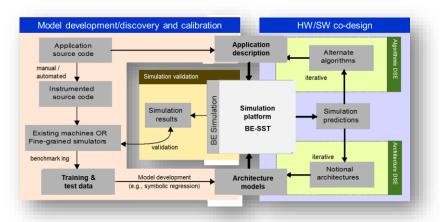


* SLAMS: System-level Application Modeling & Simulation

SLAMS¹ of Heterogeneous² HPC Systems

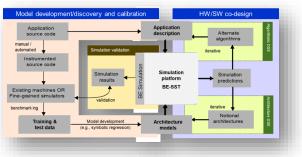
Goal: Explore methods, tools, and research directions:

 To meet the challenges of System-Level Application Modeling and Simulation of emerging and future heterogeneous HPC systems



- ¹ SLAM: System-Level Application Modeling, IARPA-RFI-19-08, <u>https://www.iarpa.gov/index.php/working-</u> with-iarpa/requests-for-information/slam.
- ² 2018 Report for DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity <u>https://orau.gov/exheterogeneity2018/2018-</u> <u>Extreme- Heterogeneity-BRN-report-final.pdf</u>
- Existing: deployed complete HPC systems; available for benchmarking
- Near-future: no such deployed HPC systems exist yet
 - Containing desired accelerators (e.g., FPGAs)
 - <u>Available nodes</u> (e.g., servers with FPGAs) for benchmarking (ex. Stratix 10 MX)
- Future: no such deployed HPC systems exist yet
 - Device/node not available for benchmarking (eMEM*, eSTOR*, future accelerators)
 - Simulators available to collect data for modeling

Foundation: SLAMS of Hetero. HPC Systems


Based on current work at Center of Compressible Multiphase Turbulence (CCMT) at the University of Florida (for *homogeneous (CPU-only)* HPC systems)

- Behavioral Emulation (BE): a coarse-grained ModSim methodology for design-space exploration of applications on existing (e.g., Vulcan, Titan, Quartz) and notional HPC systems
- BE-SST: a distributed parallel simulation library for Behavioral Emulation, integrated into the Structural Simulation Toolkit (SST) from Sandia National Labs

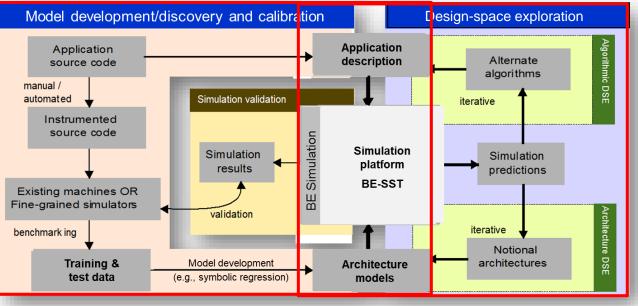
BE-SST Design Goals & Features

1. Balance of modeling *fidelity* and simulation *speed* (timeliness).

Solution: coarse-grained ModSim approach

- 2. System-level modeling and simulation
 - Need to capture difficult-to-model app and machine-specific behaviors, without requiring deep knowledge of app and machine
 Solution: symbolic regression modeling methods and tools
- **3. ModSim** tools and system which are *scalable* and *useable* for other interested users.

Solution: integration with SST (BE-SST)



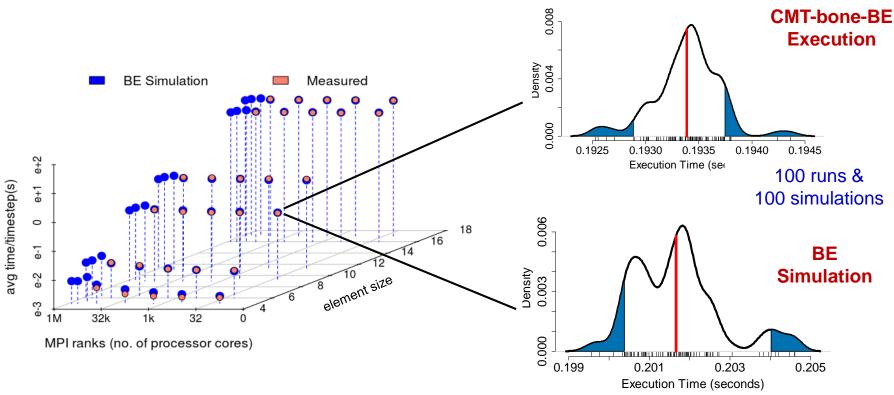
BE Workflow

HW/SW co-design

Algorithmic & arch. design-space exploration (DSE)

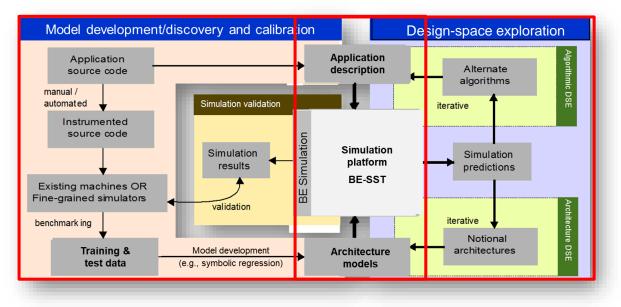
BE-

- Profile code to determine key computational and communication kernels
- Instrument & benchmark code on <u>HPC systems</u> to collect training & test data (currently only homogeneous (CPU-only) HPC systems)
- Develop/discover models using training data to (e.g., symbolic regression)
- Calibrate models if necessary: compare simulation results vs. test data


Design-space exploration phase:

Algorithmic & architectural design-space exploration (DSE)

BE Simulations of Titan+ (sample output)


- Simulating bigger system than Titan (approaching 1 Million cores)
- Average % error between CMT-bone-BE simulation and execution time is 4%
- Maximum error is 17%

$$\% error = \frac{\frac{\sum_{i=1}^{N} t_{measured i}}{N} - \frac{\sum_{i=1}^{N} t_{simulated i}}{N}}{\frac{\sum_{i=1}^{N} t_{measured i}}{N}} \times 100$$

University of

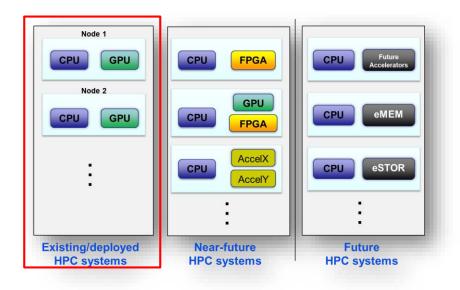
What BE/BE-SST are NOT

- 1. Not to "componentize" and model every detail of a complex system.
 - Unless required, difficult to model machine-specific behaviors abstracted and discovered through use of training data & symbolic regression
 - Components under study are modeled in detail
- 2. Not claim to solve the general co-design DSE problems
 - Focus: application DSE on given architecture <u>and</u> its notional variations

- Overview
 - Compute near Memory (CnM); Compute in Memory (CiM)
 - Research directions D1, D2

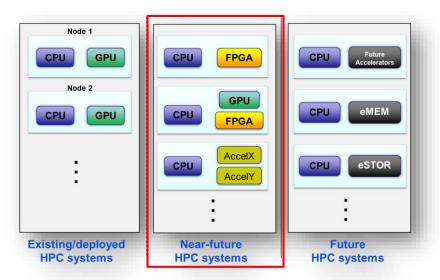
System-level ModSim of heterogeneous HPC systems

- Foundation of our approach
- Approach: deployed, near-future, future heterogeneous HPC systems
- Role of compute cache in SLAMS* of such systems
- Current progress
 - Experimental platform:
 - Bittware 520N-MX, Intel Stratix 10 MX FPGA
 - Case study
 - In preparation for Bittware board
 - Preliminary results



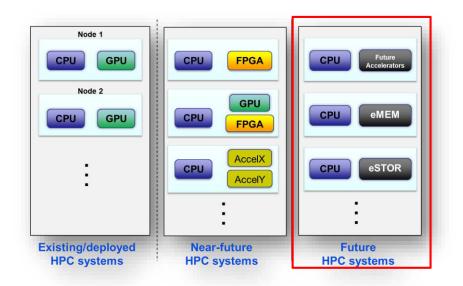
* SLAMS: System-level Application Modeling & Simulation

SLAMS Approach: Existing HPC Systems


Deployed *heterogeneous* HPC system

- Existing CPU+GPU HPC systems (e.g., Summit, Titan).
- Available for benchmarking
- We can use <u>existing BE method</u> for system-level ModSim of such systems
 - Instrument & benchmark code on nodes of HPC systems to collect training/test data
 - Develop/discover models (e.g., symbolic regression)
 - Perform design-space exploration

SLAMS Approach: Near-Future HPC Systems


Near-future *heterogeneous* HPC system

- No such deployed heterogeneous HPC systems yet (e.g., CPU+FPGA, CPU+GPU+FPGA)
- But independent <u>nodes for such systems do exist</u> (e.g., servers with FPGA boards
- Approach: BittWare 520N-MX: w/ Stratix 10 MX for compute-near-memory (CnM) research
 - Instrument & benchmark code on available nodes to collect training/test data
 - Develop/discover models (e.g., symbolic regression)
 - Perform design-space exploration

SLAMS Approach: Future HPC Systems

Future HPC systems (augmented w/eMEM*, eSTOR*, future accelerators)

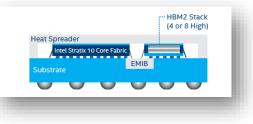
- Devices and nodes for future systems do not exist
- <u>Cannot collect benchmarking data at the node level of such systems</u>
- Approach
 - Depend on <u>simulators</u> to generate training/test data
 - Develop/discover models (e.g., symbolic regression)
 - Perform design-space exploration

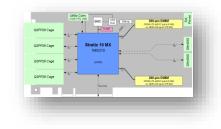
* eMem, eSTOR*: emerging memory and storage (with CiM capabilities)

Compute-in-memory

(CiM) research

- Overview
 - Compute near Memory (CnM); Compute in Memory (CiM)
 - Research directions D1, D2
- System-level ModSim of heterogeneous HPC systems
 - Foundation of our approach
 - Approach: deployed, near-future, future heterogeneous HPC systems
 - Role of compute cache in SLAMS* of such systems
- Current progress
 - Experimental platform:
 - Bittware 520N-MX, Intel Stratix 10 MX FPGA
 - Case study
 - In preparation for Bittware board
 - Preliminary results

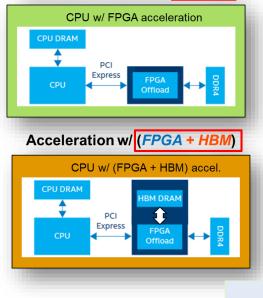

* SLAMS: System-level Application Modeling & Simulation



Stratix 10 MX Board

Bittware 520N-MX

- Intel Stratix 10 MX 1MX210 FPGA
 - Up to 2 million logic elements
 - 16 GBytes HBM2 in same package
- High Memory Bandwidth 512 Gbps
- 2 PCIe hard IP blocks
- PCIe Interface x16 PCIe Gen1, Gen2, Gen3
- Built-in Intel USB-Blaster
- UltraPort SlimSAS[™] for serial expansion
- OpenCL support


"Available 2019 June/July August Late Sept/early October"

(ResearchThrust 1)

CnM Processing for Kernel and App Acceleration

Standard acceleration w/ FPGA

- FPGAs effective as accelerators for many data-analytics apps & kernels
 - As long as problem size can fit into the FPGA
- Compute-near-Memory (CnN): Amplify acceleration capabilities of FPGAs by exploiting FPGA + nMEM*
 - FPGA-accelerated computation
 - High-bandwidth, lower-latency access to HBM2 cache

Stratix 10 MX board Stratix 10 + 16GB HBM2 (in same package)

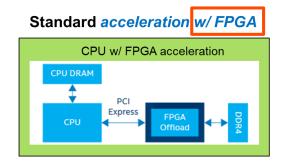
(Available 4th quarter 2019)

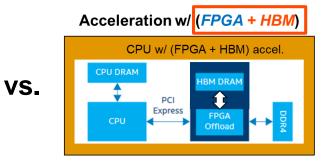
Apps Under Study

High-bandwidth cache

- Very Large (VL) matrix multiply: dense linear algebra
- VL FFT
- Deep neural nets

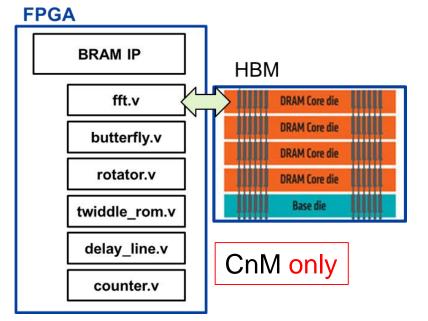
Random access


- Bitonic sort: graph traversal
- BFS: graph traversal search
- Bloom filter: large volume of small random accesses



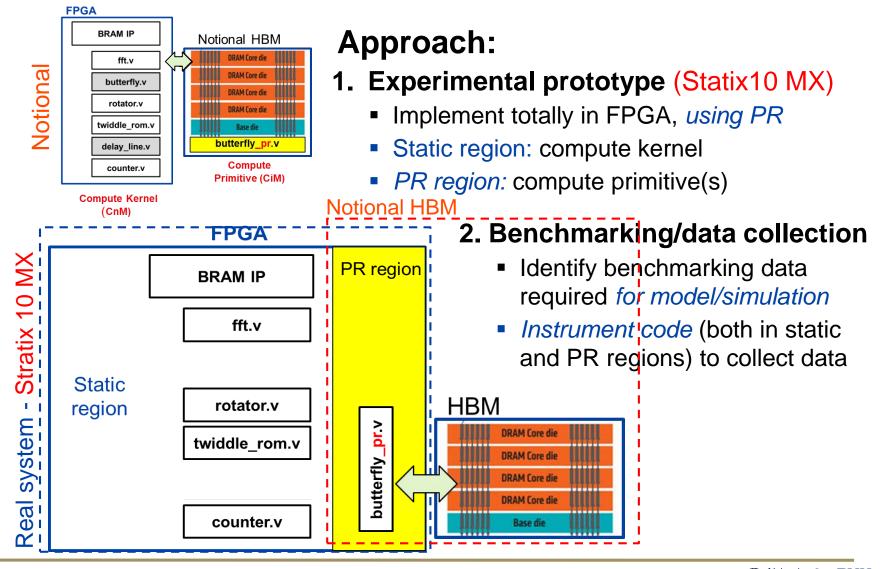
* nMEM: near-memory e.g., Stratix 10 MX with in-package16 MB HBM2

Example Case Study CnM: FFT on 520N-MX

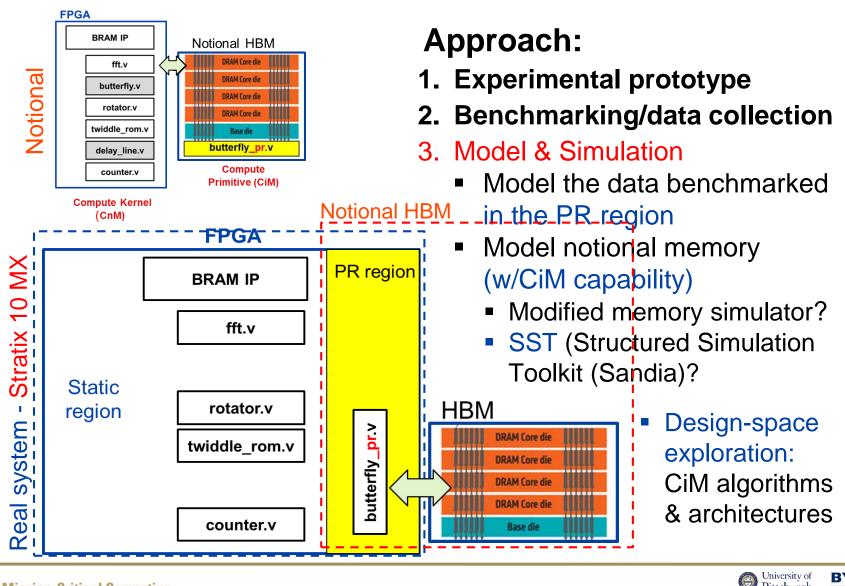

Compute near Memory: FPGA vs. FPGA + nHBM:

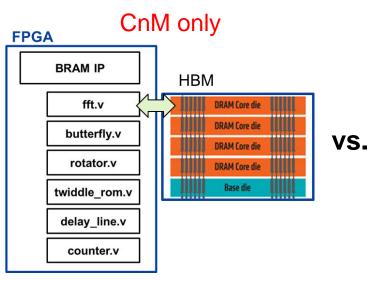
- Improve performance
- and/or FFT size

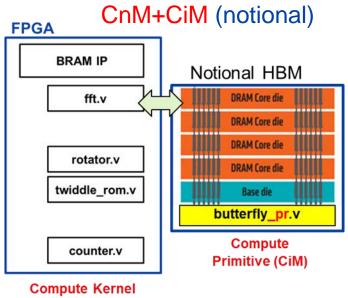
(Available 4th quarter 2019)



(ResearchThrust 2)


CnM+CiM: 520N-MX Prototype & Benchmarking


CnM+CiM: Model & Simulation

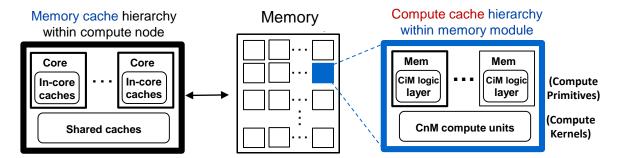


App/Kernel of Interest: CiM-amenable?

CiM considerations:

CnM)

- Can algorithm be *re-factored* to take advantage of CnM+CiM arch?
- Compute primitive characteristics
 - light-weight ops; reduces data transfer; not frequent interacting with compute kernel, can be pipelined with compute kernel ops, ... what else?...

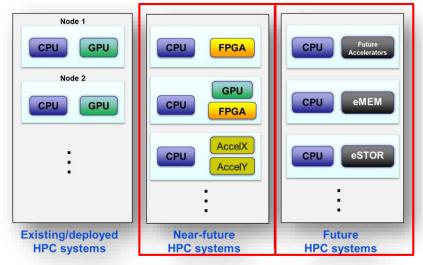


Summary: Compute Cache

Compute cache architecture for heterogeneous HPC system

- Memory cache hierarchy bring memory close to compute devices
 - In-core caches & near-core shared caches

- Complementary compute cache hierarchy bring compute close to memory
 - CiM logic compute primitives (e.g., add, mult, data-ordering ops)
 - CnM compute compute kernels (e.g., FFT, Bloom filter)
- Goal: <u>System-level</u> ModSim of emerging <u>heterogeneous</u> HPC systems
 - Emerging HPC system: Some combination (CPUs, accelerators, compute caches)



SLAMS¹ of Heterogeneous² HPC Systems

Going forward: Explore methods, tools, and research directions:

 To meet the challenges of System-Level Application Modeling and Simulation of emerging and future heterogeneous HPC systems

¹ SLAMS: System-Level Application Modeling and Simulation, IARPA-RFI-19-08, <u>https://www.iarpa.gov/index.php/working-</u> <u>with-iarpa/requests-for-information/slam</u>.

² 2018 Report for DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity <u>https://orau.gov/exheterogeneity2018/2018-</u> <u>Extreme- Heterogeneity-BRN-report-final.pdf</u>

- Existing: deployed complete HPC systems; available for benchmarking
- Near-future: deployed HPC systems
 - Without desired accelerators (e.g., FPGAs)
 - <u>Available nodes</u> (e.g., servers with FPGAs) for benchmarking (ex. Stratix 10 MX)
- Future: deployed HPC systems
 - Device/node not available for benchmarking (eMEM, eSTOR, future accelerators)
 - Simulators available to collect data for modeling

- Overview
 - Compute near Memory (CnM); Compute in Memory (CiM)
 - Research directions D1, D2
- System-level ModSim of heterogeneous HPC systems
 - Foundation of our approach
 - Approach: deployed, near-future, future heterogeneous HPC systems
 - Role of compute cache in SLAMS* of such systems
- Current progress
 - Experimental platform:
 - Bittware 520N-MX, Intel Stratix 10 MX FPGA
 - Case study
 - In preparation for Bittware board
 - Preliminary results

* SLAMS: System-level Application Modeling & Simulation

