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The context: microelectronics scaling

• It’s been a great ride…

❖ … but sequential programs don’t 

speed up each year like they used 
to in the “good old days.”


• Computation demand is growing!

❖ Massive amounts of data being 

collected by cheap, ubiquitous 
sensors.


❖ ~ 1.5B smartphones (with cameras) 
shipped in 2017.*


❖ ~ 0.75B monthly active users on 
Instagram in 2017.*


❖ Modern machine learning depends 
on massive amounts of data.

Data collected by: M. Horowitz, F. Labonte, O. Shacham, 
K. Olokutun and others; extrapolations by C. Moore

*Kleiner-Perkins 2018 Internet Trends
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Parallelism to the rescue?

1967

• Some algorithms just aren’t parallel 
❖ “Unfortunately, for most interesting algorithms, […] no architecture is scalable 

[…]” -- Agarwal et al. (CACM 1991) 
 
 
 
 
 
 
 

• But maybe we’re going about this the wrong way… 
❖ Physical systems, by their very nature, are massively parallel. 
❖ Can we build computing systems inspired by physical ones?
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Neuromorphic computing*

• Philosophical motivation

❖ Understand thought, consciousness  

• Biological motivation

❖ Understand the brain through engineering 

• Computational motivation

❖ Real-time vision, speech, pattern recognition, …

*term coined by Carver Mead

“Neuro” = neural 
“-morphic” = “having the shape, form, or structure”
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Neuromorphics 101

• Basic computation

❖ Weighted input spikes are accumulated on a 

capacitor

❖ The neuron is implemented as a “threshold 

detector”

❖ On an output spike, the state of the neuron is 

reset (with a refractory period)


• ~1,000 to 10,000 synapses per neuron


• Classical approach 
❖ Mixed-signal design: analog neurons and 

synapse circuits, digital asynchronous 
communication
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General purpose neuromorphic systems

• Core components

❖ Set of neurons + synapses from the 

network being modeled mapped to 
hardware


❖ Synapses can be made “superposable”

❖ Routing network handles spike 

communication between hardware 
elements


• Time-multiplexing

❖ Common hardware for computation

❖ Per-neuron/per-synapse state

synapse hardware

neuron 
hardware

synapse hardware

neuron 
hardware

synapse hardware

neuron 
hardware

routing
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SyNAPSE project: 2008 to 2015
❖ Analog neurons, digital spikes and 

routing 
❖ Special materials for synapses (oxides, 

phase change memory, magnetic 
tunneling junctions, nanotraps) 

❖ Embrace uncertainty in manufacturing 
technology, no compensation for 
variability 

❖ Errors in communication/neuron okay 
because the system will compensate

❖ Analog neurons, digital spikes and 
routing 

❖ Special materials for synapses 
(oxides, phase change memory, 
magnetic tunneling junctions, 
nanotraps) 

❖ Embrace uncertainty in manufacturing 
technology, no compensation for 
variability 

❖ Errors in communication/neuron okay 
because the system will compensate

2008 2014

GoldenGate TrueNorth
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Chip

Fig. 5. The spiking dynamics of the chip exactly match a software simulation
when configured with the same parameters and recurrent connectivity. Spikes
are plotted as dots for measured chip data and circles for simulation.

distribution of pixel correlations in the digits (60,000 images).
After learning these weights, we trained 10 linear classifiers
on the outputs of the hidden units using supervised learning.
Finally, we test how well the network classifies digits on out-
of-sample data (10,000 images), and achieved 94% accuracy.

To map the RBM onto our neurosynaptic core, we make
the following choices: First, we represent the 256 hidden units
with our integrate-and-fire neurons. Next, we represent each
visible unit using two axons, one for positive (excitatory) con-
nections and the other for negative (inhibitory) connections,
accounting for 968 of 1024 axons. Then, we cast the 484×256
real-valued weight matrix into two 484×256 binary matrices,
one representing the positive connections (taking the highest
15% of the positive weights), and the other representing the
negative connections (taking the lowest 15% of the weights).
Finally, the synaptic values and thresholds of each neuron are
adjusted to normalize the sum total input in the real-valued
case with the sum total input of the binary case.

Following the example from [6], we are able to imple-
ment the RBM using spiking neurons by imposing a global
inhibitory rhythm that clocks network dynamics. In the first
phase of the rhythm (no inhibition), hidden units accumulate
synaptic inputs driven by the pixels, and spike when they
detect a relevant feature; these spikes correspond to binary
activity of a conventional (non-spiking) RBM in a single
update. In the second phase of the rhythm, the strong inhibition
resets all membrane potentials to 0. By sending the outputs
of the hidden units to the same linear classifier as before
(implemented off-chip) we achieve 89% accuracy for out-of-
sample data (see Fig. 6 for one trial).

Our simple mapping from real-valued to binary weights
shows that the performance of the RBM does not decrease
significantly, and suggests that more sophisticated algorithms,
such as deep Boltzmann machines, will also perform well in
hardware despite binary weights.

V. DISCUSSION

A long standing goal in the neuromorphic community is to
create a compact, modular block that combines neurons, large
synaptic fanout, and addressable inputs. Our breakthrough
neurosynaptic core, with digital neurons, crossbar synapses,
and address-events for communication, is the first of its kind
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Fig. 6. (left) Pixels represent visible units, which drive spike activity on
excitatory (+) and inhibitory (-) axons. (middle) 16 × 16 grid of neurons
spike in response to the digit stimulus. Spikes are indicated as black squares,
and encode the digit as a set of features. (right) An off-chip linear classifier
trained on the features, and the resulting activation. Here, the classifier predicts
that 3 is the most likely digit, whereas 6 is the least likely.

to achieve this long standing goal in working silicon. The
key new component of our design is the embedded crossbar
array, which allows us to implement synaptic fanout without
resorting to off-chip memory that can create an I–O bottleneck.
By bypassing this critical bottleneck, it is now possible to build
a large on-chip network of neurosynaptic cores, creating an
ultra-low power neural fabric that can support a wide array of
real-time applications that are one-to-one with software.

Looking forward, to build a human-scale system with 1014

synapses (distributed across many chips), our next focus is
to tackle the formidable but tractable challenges of density,
passive power, and active power for inter-core communication.
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Current state-of-the-art

• IBM/Cornell “TrueNorth” chip

❖ ~25 pJ/synaptic 

operation

❖ 65mW for 1M neurons, 

256M synapses


• 28nm technology


• QDI + bundled data 
asynchronous digital logic

• Intel “Loihi” chip

❖ ~24 pJ/synaptic 

operation

❖ Integrated on-chip 

learning support

❖ Microprocessors for 

management


• 14nm technology


• QDI + bundled data 
asynchronous digital logic

• Stanford/Yale “Braindrop”

❖ ~0.4 pJ/effective 

synaptic operation

❖ Support for “NEF” 

programming model


• 28nm FDSOI


• QDI digital logic, 
synchronous I/O, and analog 
circuits for neurons and 
synapses

2014 2018 2019
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Challenges: energy-efficiency

• Biological neural systems

❖ ~ 20 fJ/synaptic operation


• TrueNorth/Loihi

❖ ~ 20 pJ/synaptic operation


• How do we close the gap?

❖ Many, many proposals (new devices, materials, etc…) for better synapses and 

neurons

❖ Reality

‣ ~30-50% power is in spike communication/storage— Amdahl strikes again!

‣ Best case: reduce to 7-10 pJ, even after overcoming all the technical 

obstacles!

❖ Many proposals with significantly lower energy reported

‣ … but not for a system, just for small devices/components
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Challenges: design and simulation

• ACT open-source language

❖ Integrated representation of

‣ properties

‣ functional model 

‣ behavioral description

‣ gates

‣ transistors

‣ geometry


❖ Type system

‣ relates different levels of abstraction

‣ inheritance for extensible modules


• Integrated commercial event-based 
and custom asynchronous digital 
simulator
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Challenges: programmability and algorithms

• How do we best utilize this computation model?

❖ … in a general-purpose framework?


• What’s the right “programming language”?

• Current solutions


❖ Use learning/training and artificial neural networks

❖ Use hand-crafted solutions

❖ Time-averaged spike rate is used to represent a value

𝛜 
(bits)

Number of “spike slots”
𝛅=0.05 𝛅=0.10 𝛅=0.25

1 28 20 8

2 176 126 56

3 848 592 288

4 3670 2582 1248

5 15211 10731 5227

max
v2[0,1]

{Prv̂[|v � v̂| > ✏]}  �

|v � v̂|  ✏

sender receiver
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Summary

• Neuromorphic systems

❖ Biologically inspired, naturally parallel approach

❖ Various attempts to create programmable platforms


• Biological systems are an existence proof

❖ … we need to better understand how they compute


• Challenges

❖ What are efficient ways to compute in this framework?

❖ How do we reduce the cost of communication and storage?

❖ Is there a different abstraction, beyond simply emulating Biology?
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