Architectures for Neuromorphic Computing

Rajit Manohar Computer Systems Lab Yale University http://csl.yale.edu/ http://avlsi.csl.yale.edu/

The context: microelectronics scaling

- It's been a great ride...
 - ... but sequential programs don't speed up each year like they used to in the "good old days."
- Computation demand is growing!
 - Massive amounts of data being collected by cheap, ubiquitous sensors.
 - ~ 1.5B smartphones (with cameras) shipped in 2017.*
 - ~ 0.75B monthly active users on Instagram in 2017.*
 - Modern machine learning depends on massive amounts of data.

Data collected by: M. Horowitz, F. Labonte, O. Shacham, K. Olokutun and others; extrapolations by C. Moore

Yale

Parallelism to the rescue?

• Some algorithms just aren't parallel

Yale

"Unfortunately, for most interesting algorithms, [...] no architecture is scalable
 [...]" -- Agarwal et al. (CACM 1991)

- But maybe we're going about this the wrong way...
 - Physical systems, by their very nature, are massively parallel.
 - * Can we build computing systems inspired by physical ones?

Neuromorphic computing*

- Philosophical motivation
 - Understand thought, consciousness
- Biological motivation
 - Understand the brain through engineering
- Computational motivation
 - ✤ Real-time vision, speech, pattern recognition, …

"Neuro" = neural "-morphic" = "having the shape, form, or structure"

Neuromorphics 101

- Basic computation
 - Weighted input spikes are accumulated on a capacitor
 - The neuron is implemented as a "threshold detector"
 - On an output spike, the state of the neuron is reset (with a refractory period)
- ~1,000 to 10,000 synapses per neuron
- Classical approach

Yale

 Mixed-signal design: analog neurons and synapse circuits, digital asynchronous communication

General purpose neuromorphic systems

- Core components
 - Set of neurons + synapses from the network being modeled mapped to hardware
 - Synapses can be made "superposable"
 - Routing network handles spike communication between hardware elements
- Time-multiplexing

Yale

- Common hardware for computation
- Per-neuron/per-synapse state

SyNAPSE project: 2008 to 2015

long-term collaboration with IBM Research

- Analog neurons, digital spikes and routing
- Special materials for synapses (oxides, phase change memory, magnetic tunneling junctions, nanotraps)
- Embrace uncertainty in manufacturing technology, no compensation for variability
- Errors in communication/neuron okay because the system will compensate

GoldenGate

TrueNorth

Vale

- Analog neurons, digital spikes and routing
- Special materials for synapses

 (oxides, phase change memory, magnetic tunneling junctions, nanotraps)
- Embrace uncertainty in manufacturing technology, no compensation for variability
- Errors in communication/neuron okay because the system will compensate

2014

2008

Current state-of-the-art

2014

- IBM/Cornell "TrueNorth" chip
 - ~25 pJ/synaptic operation
 - 65mW for 1M neurons,
 256M synapses
- 28nm technology

Yale

 QDI + bundled data asynchronous digital logic

- Intel "Loihi" chip
 - ~24 pJ/synaptic operation
 - Integrated on-chip learning support
 - Microprocessors for management
- 14nm technology
- QDI + bundled data asynchronous digital logic

2019

- Stanford/Yale "Braindrop"
 - ~0.4 pJ/effective synaptic operation
 - Support for "NEF" programming model
- 28nm FDSOI
- QDI digital logic, synchronous I/O, and analog circuits for neurons and synapses

Challenges: energy-efficiency

- Biological neural systems
 - * ~ 20 fJ/synaptic operation
- TrueNorth/Loihi
 - * ~ 20 pJ/synaptic operation
- How do we close the gap?
 - Many, many proposals (new devices, materials, etc...) for better synapses and neurons
 - ✤ Reality

Male

- ~30-50% power is in spike communication/storage Amdahl strikes again!
 - Best case: reduce to 7-10 pJ, even after overcoming all the technical obstacles!
- Many proposals with significantly lower energy reported
 - ... but not for a system, just for small devices/components

Challenges: design and simulation

- ACT open-source language
 - Integrated representation of
 - properties
 - functional model
 - behavioral description
 - gates
 - transistors
 - geometry
 - Type system

Yale

- relates different levels of abstraction
- inheritance for extensible modules
- Integrated commercial event-based and custom asynchronous digital simulator

part of the DARPA ERI initiative

Comparison of two commercial circuit simulators

Challenges: programmability and algorithms

- How do we best utilize this computation model?
 - ✤ ... in a general-purpose framework?
- What's the right "programming language"?
- Current solutions
 - Use learning/training and artificial neural networks
 - Use hand-crafted solutions
 - Time-averaged spike rate is used to represent a value

e	Number of "spike slots"		
(bits)	δ =0.05	δ =0.10	δ =0.25
1	28	20	8
2	176	126	56
3	848	592	288
4	3670	2582	1248
5	15211	10731	5227

AVLSI

Summary

- Neuromorphic systems
 - * Biologically inspired, naturally parallel approach
 - Various attempts to create programmable platforms
- Biological systems are an existence proof
 - * ... we need to better understand *how* they compute
- Challenges
 - What are efficient ways to compute in this framework?
 - How do we reduce the cost of communication and storage?
 - * Is there a *different abstraction*, beyond simply emulating Biology?

Acknowledgments

- Major project collaborators
 - * TrueNorth: Dharmendra Modha, John Arthur, Paul Merolla, ...
 - * Braindrop: Kwabena Boahen, Alex Neckar, Sam Folk, Ben Benjamin, ...
- Group members
 - * Filipp Akopyan, Nabil Imam, Saber Moradi, Carlos Otero, Jon Tse
- Many, many members of the neuromorphic community
 - ✤ Andreas Andreou, Gert Cauwenberghs, Tobi Delbruck, Shih-Chi Liu, …
- Sponsors

- DARPA, ONR, AFRL
 - Todd Hylton

