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The context: microelectronics scaling

* It’'s been a great ride...
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<+ ~ 1.5B smartphones (with cameras)
shipped in 2017.”

< ~ 0.75B monthly active users on
Instagram in 2017.*

<+ Modern machine learning depends
on massive amounts of data.
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Parallelism to the rescue?

« Some algorithms just aren’t parallel

<+ “Unfortunately, for most interesting algorithms, [...] no architecture is scalable
[...]" -- Agarwal et al. (CACM 1991)

Validity of the single processor approach to achieving large scale
computing capabilities’

Gene M. Amdahl 1967
IBM Sunnyvale, California
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- But maybe we're going about this the wrong way...
< Physical systems, by their very nature, are massively parallel.

< Can we build computing systems inspired by physical ones?
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Neuromorphic computing*

 Philosophical motivation

< Understand thought, consciousness

* Biological motivation

< Understand the brain through engineering

- Computational motivation

< Real-time vision, speech, pattern recognition, ...

“Neuro’” = neural

“-morphic” = “having the shape, form, or structure”

Yal e “term coined by Carver Mead .AVL,S l.



Neuromorphics 101

- Basic computation
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General purpose neuromorphic systems

1A

synapse hardware

« Core components

< Set of neurons + synapses from the
network being modeled mapped to
hardware

% Synapses can be made “superposable”

< Routing network handles spike
communication between hardware
elements

synapse hardware

* Time-multiplexing

<+ Common hardware for computation

< Per-neuron/per-synapse state —-/V

synapse hardware
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SYNAPSE project: 2008 to 2015

+ Analog neurons, digital spikes and
routing

+ Special materials for synapses (oxides,
phase change memory, magnetic
tunneling junctions, nanotraps)

< Embrace uncertainty in manufacturing
technology, no compensation for
variability

< Errors in communication/neuron okay
because the system will compensate

2008
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Current state-of-the-art

- IBM/Cornell “TrueNorth” chip

* ~25 pd/synaptic
operation

<+ 65mW for 1M neurons,
256M synapses

28nm technology

- QDI + bundled data
asynchronous digital logic

Yale

Intel “Loihi” chip

+ ~24 pd/synaptic
operation

<+ Integrated on-chip
learning support

< Microprocessors for
management

14nm technology

QDI + bundled data
asynchronous digital logic

2019

Stanford/Yale “Braindrop”

+ ~0.4 pJ/effective
synaptic operation

% Support for “NEF”
programming model

28nm FDSOI

QDI digital logic,
synchronous I/O, and analog
circuits for neurons and
synapses
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Challenges: energy-efficiency

 Biological neural systems

< ~ 20 fJ/synaptic operation
 TrueNorth/Loihi

< ~ 20 pJ/synaptic operation
- How do we close the gap?

<+ Many, many proposals (new devices, materials, etc...) for better synapses and
neurons

< Reality
» ~30-50% power is in spike communication/storage— Amdahl strikes again!

» Best case: reduce to 7-10 pJ, even after overcoming all the technical
obstacles!

% Many proposals with significantly lower energy reported

» ... but not for a system, just for small devices/components
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Challenges: design and simulation

- ACT open-source language [_Desion |
.act *
< Integrated representation of \ Expanded New cel
: v design ‘ generation
4 propertles .act ¢ / ¢ .Spice
» functional model v < \ Technology |._.._ Characterizer
mapping
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< Type system [ et
» relates different levels of abstraction

» inheritance for extensible modules

* Integrated commercial event-based
and custom asynchronous digital

simulator
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Comparison of two commercial circuit simulators
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Challenges: programmability and algorithms

- How do we best utilize this computation model?
< ... in a general-purpose framework?

» What’s the right “programming language”?

 Current solutions
< Use learning/training and artificial neural networks
< Use hand-crafted solutions

% Time-averaged spike rate is used to represent a value

€ Number of “spike slots”
(bits) §=0.05 &=0.10 &=0.25 v—0] <e
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ve[0,1]
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Summary

« Neuromorphic systems
< Biologically inspired, naturally parallel approach

< Various attempts to create programmable platforms

» Biological systems are an existence proof

% ... we need to better understand how they compute

 Challenges
< What are efficient ways to compute in this framework?
<+ How do we reduce the cost of communication and storage?

+ Is there a different abstraction, beyond simply emulating Biology?
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