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The first “exascale
supercomputer
Fugaku & beyond

e Satoshi Matsuoka
e Director, RIKEN Center for Computation |
e 20190815 Modsim Presentation | [ Qs
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R Arm64fx & Fugaku & /Post-K are: S
o Fu1|tsu Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU
o HPC Optimized: Extremely high package high memory BW

(1TByte/s), on-die Tofu-D network BW (~400Gbps), high SVE FLOPS
(~3Teraflops), various Al support (FP16, INTS8, etc.)

o Gen purpose CPU- Linux, Windows (Word), other SCs/Clouds

o Extremely power efficient — > 10x power/perf efficiency for CFD
benchmark over current mainstream x86 CPU

e Largest and fastest supercomputer to be ever built circa 2020
e > 150,000 nodes, superseding LLNL Sequoia s n

e > 150 PetaByte/s memory BW AGGER
e Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic)
o 25~30PB NVMe L1 storage

o many endpoint 100Gbps I/O network into Lustre
o The first ‘exascale’ machine (not exa64bitflops but in apps perf.)
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R Brief History of R-CCS towards Fugaku

July 2010

RIKEN AICS established
August 2010

HPCI Project start

September 2010

K computer installation starts

First meeting of SDHPC (Post-K)

2010

Next Generation Supercomputer
Project (K Computer) start

April 2012

Post-K Feasibility Study start

3 Arch Teams and 1 Apps Team
June 2012

K computer construction complete
September 2012

K computer production start
November 2012

ACM Gordon bell Award

2011 2013

2012

()
/

End of FY2013 (Mar 2014)
Post-K Feasibility Study Reports

/

June 2011

2014

[ )y & Wh

AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new
Director

Arm A64fx announce at Hotchips
NEDO 100x processor project start

Post-K Manufacturing approval by
Prime Minister’'s CSTI Committee

2019

#1 onTop 500

November 2011

#1 on Top 500 > 10 Petaflops
ACM Gordon Bell Award

End of FY 2011 (March2012)
SDHPC Whitepaper

April 2014

Post-K project start
June 2014

#1 on Graph 500

March 2019

Post-K Manufacturing start

May 2019

Post-K named “Supercomputer Fugaku”
July 2019

Post-Moore Whitepaper start

Aug 2019

K Computer shutdown

Dec 2019

Fugaku installation start (planned)




SDHPC (2011-2012) Candidate of ExaScale Architecture

https://www.exascale.org/mediawiki/images/a/aa/Talk-3-kondo.pdf

» Four types of architectures are considered

General Purpose (GP)
Ordinary CPU-based MPPs

e.g.) K-Computer, GPU, Blue Gene, Memory

capacity
x86-based PC-clusters A @

Capacity-Bandwidth oriented (CB)
With expensive memory-I/F rather than bandwidt
computing capability
e.g.) Vector machines

Reduced Memory (RM)

With embedded (main) memory

e.g.) SoC, MD-GRAPE4, Anton
Compute Oriented (CO)

Many processing units

e.g.) ClearSpeed, GRAPE-DR

General
purpose

Compute
oriented

IESP Meeting@Kobe (April 12, 2012)


https://www.exascale.org/mediawiki/images/a/aa/Talk-3-kondo.pdf

SDHPC (2011-2012) Performance Projection

» Performance projection for an HPC system in 2018

Achieved through continuous technology development
Constraints: 20 — 30MW electricity & 2000sgmspace

Total CPU  TotalMemory Total Memory

Performance Bandwidth Capacity

Node Performance  (PetaFLOPS) (PetaByte/s) (PetaByte)
General Purpose 200~400 20~40 20~40
Capacity-BW Oriented 50~100 50~100 50~100
Reduced Memory 500~1000 250~500 0.1~0.2
Compute Oriented 1000~2000 5~10 5~10

Network Storage
Min Max Total Capacity

Injection P-to-P Bisection Latency Latency 1 g

High-radix 32GB/s 32GB/s 2.0PB/s 200ns 1000ns

100 timeslarger
(Dragonfly)

than main
Low-radix 128GB/s 16GB/s 0.13PB/s 100ns 5000ns mMemory
(4D Torus)

IESP Meeting@Kobe (April 12, 2012)

Byte / Flop

0.1
1.0
0.5
0.005

Total Bandwidth
10TB/s

For saving all data
in memory to disks
within 1000-sec.



SDHPC (2011-2012) Gap Between Requirement and Technology Trends

» Mapping four architectures onto science requirement

» Projected performance vs. science requirement
Big gap between projected and required performance

Mapping of Architectures Projected vs. Required Perf.
1.0E+1 2700
- 4\ Gap between
L 10E%0 @ o : requirements and
= O technology trends
i 1800
%= 1.0E-1 a
5 1T 2
% [} A
€ 10E-2 & :
.% = 900 : A
o o : A
& 1.0E-3 & I : E
1.0E-4 : : X : : 0 - =
10E-3 1.0E-2 10E-1 10E+0 1.0E+1 1.0E+2 1.0E+3 cp RM GP CB

Requirement of Memory Capacity (PB)

Needs national research project for science-driven HPC systems

IESP Meeting@Kobe (April 12, 2012) 7



R Post-K Feasibility Study (2012-2013) om

RIKZN

e 3 Architecture Teams, from identified architectural types in
the SDHPC report
e General Purpose --- balanced
e Compute Intensive --- high flops and/or low memory capacity

& high memory BW

e Large Memory Capacity --- also w/high memory BW

e The A64fx processor satisfied multiple roles - basically
balanced but also compute intensive

e Application Team (Tomita, Matsuoka)
o Put all the K-Computer applications stakeholders into one room
o Templated reporting of science impact possible on exascale
machines and their computational algorithms / requirements
e 600 page report (English summary available)



R Post-K Application Feasibility Study 2012-2013

https://hpci-aplfs.r-ccs.riken.jp/document/roadmap/roadmap_e_1405.pdf

Social Contributions and Scientific Qutcomes
Aimed for by Innovations through Large-Scale

May, 2014

Feasibility Study on Future HPC Infrastructures

(Application Working Group)

mechanisms, such as blood clot formation in the heart or brain infarctions, and will be effective in
improving patients’ Quality of Life (QOL) through the development of minimally invasive treatments,
which only pose a slight burden to the patient, and of the medical devices required for these
treatments. It will further be effective in revitalizing socicty through patients” carly re-entry into the
community and in reducing costs of medical treatment.

ial and Scientific Problems in Computational Sciences
rUg a Innovation in drug design and

medical technology
Current studies — Contribution to soclety
n
B Small-scale data analysis in Approaches on future B Realization of systematic medical
each field Ww Care with ApprOpriate treatments
8  Independent progress in B Global gene network analysis baied on individual genetic

nlormason
B Shoet-term new drug
development with cost reduction
Less painful medical treatment to
improve patients’ quality of e,
decresse med ¥ eaperses and
smulate 10Ckety theough quikk
rehabiltation into the
community

each field of laepe-scale data generated
8 Only smple models are by DNA sequencer

avadable due 1o imitations || ™ OFVE desen inaced

of computational resources SR——

(e.g.. simple neural moded)

Y-
S e

P

I'he supercomputer’s vast computational power will undoubtedly greatly contrnibute to the
development of various aspects in the ficld of life science, such as detailed neural and cellular
simulations, simulations over extended periods of time and space, and almost real-time assimilation®
of those data. Eventually it could form an important scientific basis for mnovative drug design and

medical technologies.

The table below lists the computational performance required in the future for the respective arcas of

drug discovery and healthcare.

“ One of the methods to merge different observational and experimental data into a numerical model at a high
degree.
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Figures marked with a * are still under examination. The website will show more accurate figures a:

they become available



R Co-Design Activities in Fugaku S

RIKZN R'CCS

Multiple Activities since 2011 |
Science by Computing Science of Computing

9 Priority App Areas: High Concern to

General Public: Medical/Pharma, s
Environment/Disaster, Energy
Manufacturing, . oo Ab64fx
Post-K
Select representatives fr Design systems with param

om 100s of applications eters that consider various ,
srgomee signifying various compu application characteristics R
tational characteristics e L

e Extremely tight collabrations between the Co-Design apps centers,
Riken, and Fujitsu, etc.

e Chose 9 representative apps as “target application” scenario
e Achieve up to x100 speedup c.f. K-Computer
e Also ease-of-programming, broad SW ecosystem, very low power,




®
RIKEN

Research Subjects of the: Post-Ki Computer

The post K computer will expand the fields pioneered by the K computer, and also challenge new areas.

Personalized and Integrated simulation
preventive medicine systems induced by
using big data earthquake and tsunami
mo«m?mnm and 4 other institutions

Meteorological and
global environmental
predictions using
big data

JAMSTEC / Center for Earth Information

Sclence and T of Japan,
and Socmbm

Innovative computing
infrastructure for
drug discovery

RIKEN Quantitative Center,
and 6 other ins! s

Priority
Issues

Elucidation of R&D and applications .
the fundamental laws () developmentin areasinvolving [~ New technologies for
and evolution < social & scientific priority issues ) energy creation,
of the universe to be tackled by using conversion/storage,
the post K computer and use
Centesfor ComputatonalScence /
and 10 other 0 National nstute of Natural Scences,
and 8 other institutions

Development of
innovative design and
production processes

Accelerated development
of innovative clean

Institute of industrial Science / Creation of energy systems
oy ettt F oA new functional devices  Schoolof Engincering /the University of Tokyo,
and high-performance
materials

The Institute of Solid State Physics /
the University of Tokyo, and 9 other institutions

o
R-CCS

11



P Genesis MD: proteins im acelllemvironment: cm

RIKZN R-CCS

Protein simulation before K Protein simulation with K

B Simulation of a protein in isolation

M all atom simulation of a cell interior

Folding simulation of Villin, a small protein ] )
B cytoplasm of Mycoplasma genitalium

with 36 amino acids

Ribosome  proteins

<
<




R NICAM: Global Climate Simulatiom o

RIKZN

B Global cloud resolving model with 0.87 km-mesh which allows
resolution of cumulus clouds
B Month-long forecasts of Madden-Julian oscillations in the tropics isrealized.

Global cloud resolving
model

i

Miyamoto et al (2013) , Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944.



R “Big Data Assimilation” NICAM+LETKF

High-precision Simulations

EITEHFIBREA

i Future-generation technologies
2 2 vailable 10 years in advance

High-precision
observations

Mutual feedback



Co-design from Apps to Architecture

e Architectural Parameters to be determined

#SIMD, SIMD length, #core, #NUMA node, O3 resources, specialized hardware
cache (size and bandwidth), memory technologies

Chip die-size, power consumption
Interconnect

e We have selected a set of targetapplications

e Performance estimation tool

Performance projection using Fujitsu FX100 execution
profile to a set of arch. parameters.

e Co-design Methodology (at early design
phase)

RINEN

1.
2.

Setting set of system parameters

Tuning target applications under the
system parameters

Evaluating execution time using prediction
tools

Identifying hardware bottlenecks and
changing the set of system parameters

—

Target applications representatives of
almost all our applications in termsof
computational methods and
communication patterns in order to
design architectural features.

Target Application

Brief description

GENESIS

®

Genomon

GAMERA

NICAM+LETK

NTChem
FFB
RSDFT

®@ O ©®@ © ® © ©

Adventure

©

CCS-QCD

MD for proteins

Genome processing (Genome alignment)

Earthquake simulator (FEMin unstructured & structured
grid)

Weather prediction system using Big data (structured grid
stencil & ensemble Kalman filter)

molecular electronic (structure calculation)
Large Eddy Simulation (unstructured grid)

an ab-initio program (density functional theory)

Computational Mechanics System for Large Scale Analysis
and Design (unstructured grid)

Lattice QCD simulation (structured grid Monte Carlo)

&, |||
R-CCS



Co-design of Apps for Architecture Qo
e Tools for performance tuning

Analysis of applications to devise

e Performance estimation tool et et eokutioiss
Performance projection using Fujitsu FX100 ' | Applications |
e Execution Model ‘

execution profile
Gives “target” performance

Programming System

Architecture ‘

e Post-K processor simulator | RSB DR |
Based on gemb5, 03, cycIe-IeveIsimuIation Issues and opportunities
to exploit

Very slow, so limited to kernel-level evaluation

_ Target Asis  Tuning1
e Co-design of apps perforrnance/ / Tuning2
. « ” . 4000 /
e 1. Estimate “target” performance using / v ®
performance estimation tool 8 / \
%_0.0 \ 4 @
e 2. Extract kernel code for simulator % -
e 3. Measure exec time using simulator @ 5312‘2 - —
Ll

e 4. Feed-back to code optimization
e 5. Feed-back to compiler

ance
estimation
toolcd

Perform-

Simulator Simulator Simulator

RINEN



RINEN

ARM for HPC - Co-design Opportunities

e ARM SVE Vector Length Agnostic feature is very interesting, since we can
examine vector performance using the same binary.

e We have investigated how to improve the performance of SVE keeping

hardware-resource the same. (in “Rev-A”

paper)

e eX. “512 bits SVE x 2 pipes” vs. “1024 bits SVEx 1 pipe”

e Evaluation of Performance and Power ( in“coolchips” paper) by using our gem-5
simulator (with “white” parameter) and ARM compiler.

e Conclusion: Wide vector size over FPU element size will improve performance if there are
enough rename registers and the utilization of FPU has room for improvement.

Note that these researches are not relevantto

“post-K” architecture.

® Y.Kodama, T. Oajima and M. Sato. “Preliminary
Performance Evaluation of Application Kemels Using
ARM SVEwith Multiple Vector Lengths”, In Re-
Emergence of Vector Architectures Workshop (Rev-
A)in 2017 IEEEInternational Conference on Cluster
Computing, pp. 677-684, Sep.2017.

® T Odajima, Y.Kodama and M. Sato, “Power
Performance Analysis of ARM Scalable Vector
Extension”, In IEEESymposium on Low-Power and
High-Speed Chips and Systems (COOL Chips 21), Apr.
2018

Relative Execution Time
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R-CCS



A64F X Leading-edge Si-technology

et
et

B TSMC 7nm FinFET & CoWoS e

W Broadcom SerDes, HBM 1/0, ahd
SRAMs

BRI o
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4
.
y

o)
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Post-K Activities, ISC19, Frankfurt 18

Copyright 2019 FUJITSU LIMITED



R Fugaku: The Game Changer m

—————T—— ' 1. Heritage of the K-Computer, HPin simulation via extensive Co-Design
= = - High performance: up to x100 performance of Kinreal applications
Multitudes of Scientific Breakthroughs via Fugaku application programs
Simultaneous high performance and ease-of-programming
2. New Technology Innovations of Fugaku Global leadership not justin

High Performance, esp. via high memory BW the machine&apps but as
Performance boost by “factors” c.f. mainstream CPUsin many cutting edge I.I’.

HPC & Society5.0 apps via BW & Vector acceleration

« Arm Global Ecosystem & SVE contribution |
Top CPUin ARM Ecosystem of 21 billion chips/year, SVE co- )
design and world’s first implementation by Fujitsu

e High Perf. on Society5.0 apps incl. Al
Architectural features for high perf on Society 5.0 apps based
on Big Data, AlI/ML, CAE/EDA, Blockchain security, etc.

Technology not just limited to Fugaku, but into societal IT infrastructures e.g. Clouds

e Very Green e.g. extreme power efficiency ’
Ultra Power efficient design & various power control knobs S

FujiTsu

b ARM: Massive ecosystem
A64F X from embedded to HPC



Fugaku’s FUjitsu A64fx Processor is- ReES

®
RIKEN

e an Many-Core ARM CPU - — —
e 48 compute cores + 2 or 4 assistant (OS) cores| & ‘i°[“[°"e}}_3'"‘efﬁ°f __________
o Brand new core design - Q0 LR :
 Near Xeon-Class Integer performance core | | ['F"| <57 BT [T12] !
e ARMVS8 --- 64bit ARM ecosystem ::::::::::::::: 0 \/::::::::::::::
o Tofu-D + PCle 3 external connection = gad); | © |1 [ =) |
LT U
e --but also an accelerated GPU-like processor-—-t——"_ === 4---- ’

e SVE 512 bit x 2 vector extensions (ARM & Fujitsu)
. Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)
e Cache + scratchpad-like local memory (sector cache)

e HBM2 on package memory - Massive Mem BW (Bytes/DPF ~0.4)
. Streaming memory access, strided access, scatter/gather etc.
e Intra-chip barrier synch. and other memory enhancing features

e GPU-like High performance in HPC, Al/Big Data, AutoDriving--- 20



“Fugaku” CPU Performance Evaluation (2/3) FUJITSU

B Himeno Benchmark (Fortran90)
® Stencil calculation to solve Poisson’s equation by Jacobi method

400 346

350 286 305
- 300
o 250
L 200
i —

s — I
Intel Xeon Fugaku A64FX SX-Aurorat Tesla V100t
Platinum 8168 1 CPU 1 VE 1 GPU
] CPUS T “Performance evaluation of a vector supercomputer SX-aurora
TSUBASA”’ itation efm?2id=22Q4729

Post-K Activities, ISC19, Frankfurt 21 Copyright 2019 FUJITSU LIMITED



“Fugaku” CPU Performance Evaluation (3/3) FUJITSU

Bm\WRF: Weather Research and Forecasting model

® Vectorizing loops including IF-constructs is key optimization
W Source code tuning using directives promotes compiler optimizations

Post-K Activities, ISC19, Frankfurt Copyright 2019 FUJITSU LIMITED



ABG4FX: Tofu interconnect D FUJITSU

B Integrated w/ rich resources

¥ Increased TNIs achieves higher injection BW & flexible comm. patterns
W Increased barrier resources allow flexible collective comm. algorithms

B Memory bypassing achieves low latency: " HBM2 } HBMZ2 | ABA4FX
® Direct descriptor & cache injection CMC‘ & CMQ 1 IR

f e P i
CJCJC CIClC i 5 i
TofuD spec naml fcce i} S '_’g i
Z / ; > —) S :
Pc.>rt t?andW|dth . 6.8 GB/s g Coherent NOC S |¢mmp 2 |
Injection bandwidth 40.8 GB/s , s | 5 e 2 |
i | i 3 !
Measured oo | sees | 5 =5
i ¥ C i o — |

Put throughput 6.35 GB/s ; | foee | = e

Ping-pong latenc 0.49~0.54 ps cmd icm@ J
21 4 H i HBM2 :i HBM2 'i ----------------------------

————————————————————————————

25 © 2019 FUJITSU



Fugaku Chassis, PCB (w/DLC), and CPU Package FUJiTSU

e ) 230 mm .
‘u' =¥ . | I-” _ - =—~" “ - | A
# e O3 —"
:‘,’ "ﬁ /{' a A
. ;i | FUiTsu
] E " CPU | «
| 15 @ | A64fx mm
[ NIk 280 |
' { | : mm | v
T 60 :
mm
H2000mn ‘" | — LI~ AO Chip Booted in 3
384 nodes O ip Booted in June
CMU LR Undergoing Tests
FUJITSU CONFIDENTIAL

Copyright 2018 FUJITSU LIMITED



RIK=H

e 3-level hierarchical storage
o 1stLayer: GFSCache + Temp FS(25~30 PB NVMe)
e 2nd | gyer: Lustre-based GFS (a few hundred PBHDD)

e 3rd Layer: Off-site Cloud Storage
e Full Machine Spec

R Overview of Fugaku System & Storage G

- Compute Node + Compute&IO Node

e >150,000 nodes sfeLrr ceioe T
~8 million High Perf. Arm v8.2 Cores e e
> ‘ISOPB/S memor BW S e !
) ’ . el i e L ok
e Tofu-D 10x Global IDC traffic @ 60Pbps ' S s i e i i = LoginNode | Lopnode
e > 400 racks \ — lIm’l — |
e ~40 MegaWatts Machine+IDC K . ]

PUE ~ 1.1 High Pressure DLC B !

e NRE pays off: ~= 15~30 million
state-of-the art competing CPU
Cores for HPC workloads
(both dense and sparse problems)




Fugaku Performance Estimate on 9 Co-Design Target Apps S

RCCS
Ca:;go Priority Issue Area Ssee;jodgqgcgreK Application Brief description
O Performance target goal
§ 1. Innovative computing
v 100 times faster than Kfor some applications = g}fsfjjijr‘;t“fe for drug 125x + GENESIS MD for proteins
(tuning included) 5
v' 30 to 40 MW powerconsumption S | 2. Personalized and .
p p ((-.E preventive medicine using big 8X -+ GenomOn (%enome prlgcessmg
: <, enome alignmen
O Peak performance to be achieved g |
3. Integrated simulation Earthquake simulator (FEM in
PostK K u 3 ke St manmi 45X + GAMERA | nsiructured & structured grid)
Peak DP >400+ Pflops S <o — _
(double presision) (34x +) P 11.3 Pflops % 33 % 4. Meteorological and global NICAM+ | Weather prediction system using
o g = environmental predictionusing 1 20x + LETKE Big data (structured grid stencil &
Peak SP >800+ Pflops 11.3 Pflops = big data ensemble Kalman filter)
eingle presii) ) - an‘fwif‘e’gggL°9£f“gS|on / 40X + NTCh Molecular electronic simulation
" I;eak HP | >1 ? 10‘?1+ Pﬂ)OpS . > B nd Use em (structure calculation)
alf precision X + 3
<
Total memory >150+ PB/sec o 6. Accelerated development of Computational MeChamCSl System
bandwidth (29x +) 5,184TB/sec & innovative clean energy 35x + Adventure | forLarge Scale Analysis and
systely Design (unstructured grid)
o© 8 7. Qreation of_new functional Ab-initio simulation
O Geometric Mean of Performance § ?_?; 3 e AU TR 30x + RSDFT (density functional theory)
Speedup of the 9 Target Applications g ” 28 T — ———
n O - ; arge Eddy Simulation
over the K Computer f'_:D._ § greosclzgegsaeréd production 25X + FFB (unstructured grid)
> 32 K+ 2 9. Elucidation of the : . ,
o T e 25x + LQCD Lattice QCD simulation (structured
p ok i i rid Monte Carlo)
® Asof 2019/05/14 g ©° evolution of the universe g
RIKEN




Many Core Era

Post Moore
Cambrian Era . ﬂ

Flops-Centric Monolithic Algorithms and Apps

Cambrian Heterogeneous Algorithms and Apps

Flops-Centric Monolithic System Software

Cambrian Heterogeneous System Software

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Homogeneous General Purpose Nodes
Compu + | ocalized Da
Nod

P
=
S

>

N

< >

Compu
Nod

Loosely Coupled with Electronic Interconnect

Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

Hardware/Software System APIs
“Cambrian” Heterogeneous Architecture

nflgurable SO
Massive BW _Dataflow ¥ i)
Computing

3-D Package

PP Non-\blatile > Quantum
¥ Memory J LowPrecision Computing

Error-Prone

UItra Tghtly Coupled W/Aggresswe
3-D+Photonic Switching Interconnected

Novel Devices + CMOS (Dark Silicon)
(Nanophotonics, Non-Volatile Devices etc.)




RIKZN

July 2010
August 2010

September 2010

RIKEN AICS established
HPCI Project start

K computer installation starts
First meeting of SDHPC (Post-K)

2006

April 2012

Post-K Feasibility Study start

3 Arch Teams and 1 Apps Team
June 2012

K computer construction complete
September 2012

K computer production start
November 2012

ACM Gordon bell Award

2011 2013

2010

January 2006

Next Generation Supercomputer
Project (K Computer) start

2012

()
/

End of FY2013 (Mar 2014)
Post-K Feasibility Study Reports

/

June 2011
#1 onTop 500
November 2011

#1 on Top 500 > 10 Petaflops

April 2014
ACM Gordon Bell Award Post-K project start
End of FY 2011 (March 2012) June 2014

SDHPC Whitepaper

R Brief History of R-CCS towards Fugaku Qi

April 2018

AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new
Director

Aug 2018

Arm A64fx announce at Hotchips
Oct 2018

NEDO 100x processor project start
Nov 2018

Post-K Manufacturing approval by
Prime Minister’'s CSTI Committee

2014 2019
2018
March 2019 I
Post-K Manufacturing start
May 2019

Post-K named “Supercomputer Fugaku”
July 2019
Post-Moore Whitepaper start

#1 on Graph 500

Aug 2019

K Computer shutdown

Dec 2019

Fugaku installation start (planned) 31




R Retrospect - have we done the right modsim? ¢

e New Al methodologies and architectures - how do we
deal with them?
e Post-Moore speedup methodologies

e FLOPS no longer free — towards BW-centric?

e Extreme heterogeneity - neuromorphic, (pseudo-) quantum

e Severe power constraints and high failure rates

e Methodological questions

e How do we modsim new computing models?

e Are we picking the right benchmarks for modsim — (not
contrived? C.f. Berkely “Motifs”)

e Are we using the right modsim technologies — are we stuck
on first principle simuations?

e How do we modsim inexact systems — perf variations,
frequent failures, inexact calculations, etc.
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Motivation and Initial Question (To float ... or not to float ...?)

Thanks to the (curse of) the TOP500 list, the HPC community (and vendors)
are chasing higher FP64 performance, thru frequency, SIMD, more FP units, ...

Motivation: ——>  Saves power

Less FP64 units

v

Free chip area (for e.g.: FP16)

— Less divergence of “HPC-capable”
CPUs from mainstream processors

Resulting Research Questions:
Q1: How much do HPC workloads actually depend on FP64instructions?

Q2: How well do our HPC workloads utilize the FP64 units?

Q3: Are our architectures well- or ill-balanced: more FP64, or FP32, Integer,
memory?

..and ...

Q4: How can we actually verify our hypothesis, that we need less FP64 and
should invest $ and chip area in more/faster FP32 units and/ormemory)?

Jens Domke 34



Approach and Assumptions

Idea/Methodology
Compare two similar chips; different balance in FPUs = Which?

Use ‘real’ applications running on current/next-gen. machines = Which?

Assumptions
Our HPC (mini-)apps are well-optimized
Appropriate compiler settings
Used in procurement of next gen. machines (e.g. Summit, Post-K, ...)
Mini-apps: Legit representative of the priority applications
We can find two chips which are similar
No major differences (besides FP64 units)
Aside from minor differences we know of (...more on next slide)
The measurement tools/methods are reliable

Make sanity checks (e.g.: use HPL and HPCG as reference)

' Aaziz et at, “A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”, in IEEE Cluster 2018
Jens Domke 35



Methodology — CPU Architectures

Two very similar CPUs with large difference in FP64 units
Intel dropped 1 DP unit for 2x SP and 4x VNNI (similar to Nvidia’s TensorCore)

Vector Neural Network Instruction (VNNI) supports SP floating point and mixed
precision integers (16-bit input/32-bit output)ops

= KNM: 2.6x higher SP peak performance and 35% lower DP peak perf.
KNL vs KNM: Port comparisons

§ FI A
§ ' 512bits
P s12bits SP/VNNI1 .

smd]

512bits

‘ 2

512bits :  S12bits
:
-

SP/VNNI1 .

Knights Landing 0.5x DP Knights Mill
(DP: 2 ports x 1 x 16 flops = 32 flops/cyc) 2x SP (DP: 1 ports x 1 x 16 flops = 16 flops/cyc)
(SP: 2 ports x 1 x 32 flops = 64 flops/cyc) 4x VNNI (SP: 2 ports x 2 x 32 flops = 128 flops/cyc)
(VP: 2 ports x 2 x 64 ops = 256 ops/cyc)
Jens Domke 36

(Figure source: https://www.servethehome.com/intel-knights-mill-for-machine-learning/)



http://www.servethehome.com/intel-knights-mill-for-machine-learning/)

Methodology — Benchmarks and Execution Environment

Jens Domke

23 mini-apps used in procurement process of next-gen machines

CANDLE

CoMD

Laghos

MACSio

miniAMR

miniFE

miniTRI

Nekbone

SWidlite
SWFFT

XSBench

Algebraic multigrid solver for unstructured grids

DL predict drug response based on molecular
of tumor cells

Generate atomic transition pathways between any two
structures of a protein

Solves the Euler equation of compressiblegas

Scalable I/0 Proxy Application

Proxy app for structured adaptive mesh refinement (3D
stencil) kernels used by many scientificcodes

Proxy for unstructured implicit finite element orfinite
volume applications

Proxy for dense subgraph detection, characterizing
graphs, and improving community detection

High order, incompressible Navier-Stokes solver
spectral element method

Kernels for 3D seismic modeling in 4th order

Fast Fourier transforms (FFT) used in by Hardware
Accelerated Cosmology Code (HACC)

Kernel of the Monte Carlo neutronics app: OpenMC

_ Workload  Post-k__| Workload

CCS QCD Linear equation solver (sparse matrix) for lattice
chromodynamics (QCD) problem

FFVC Solves the 3D unsteady thermal flow ofthe
incompressible fluid

NICAM Benchmark of atmospheric general circulation model
reproducing the unsteady baroclinicoscillation

mVMC Variational Monte Carlo method applicable for a wide
range of Hamiltonians for interacting fermionsystems

NGSA Parses data generated by a next-generation genome
sequencer and identifies genetic differences

MODYLAS Molecular dynamics framework adopting the fast
multipole method (FMM) for electrostaticinteractions

NTChem Kernel for molecular electronic structure calculation of
standard quantum chemistry approaches

FFB Unsteady incompressible Navier-Stokes solver by

element method for thermal flow simulations

HPL Solves dense system of linear equations Ax =b

HPCG Conjugate gradient method on sparse matrix

Stream Throughput measurements of memory subsystem

1oxyo rech
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Jens Domke

esults — Compare Time-to-Solution in Solver

1.5
- | KNM  m
g KNL ‘ o
7
2 KNL
= 1 .
Z baseline
H
&
0.5
Fig. 4. [Speedup o
input i
Only 3 apps seem/to suffer issing DP  (MiniTri: no FP; FFVC: only int+FP32)

VNNI may help
NTChem impr

KNL overall better (due to 100MHz freq. incr.?)

ith CANDLE perf. on KNM;
ement unclear § [

MemorySyven Throoghpet (G
2
-

Memory throughput on Phi (in cache mode)
doesn’t reach peak of flat mode
(only ~86% on KNL; ~75% on KNL) Phiy pe proy-app: Doted lines ndicale Triad sream bandwidth (1t made,

cf. Tab. I); BabelStream for 2GiB (BABL2) and 14 GiB (BABL14) vector

Note: MiniAMR not strong-scaling = limited comparability

1oxyo ech
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Results — Compare Gflop/s in Comp. Kernel/Solver

8 apps out of 18: less Gflop/s on Phi than on BDW (ignoring I/O & Int-based apps)

>
Q
©
©

(ignoring HPL) with low FP efficiency:
< 21.5% on BDW, <10.5% on KNL, <15.1% on KNM (Why? =» next slides)

Phi perform ce comes from higher peak flop/s, lop/s and/or faster MCDRAM?

3 X
m -
g
3 Relative
= perf. over
-3
g BDW
< baseline
&
2
I{ )
e 10057 -
= KNL,,, ®
% 80 + KNMah\ A o
- BDW A
= e Absolute
= 60}
2 Gflop/s perf.
= a
g wlf | comparedto
0% of E theor. peak
3. N RPN T JUS S AU OO S R O N LA N WO O P N
theor.peak = A
: ;3 LK . t 4
T olm EH & 4 & P A R & . .
Y O Q S Yt Y A K O A h S Ay oy e A 4 , L %
Jens Domke o o, “u, T, "%, ’“’4,4”3- %y Ty, > ey % Py 2, "14,(\ %, "0, "% %, ¥ X,
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Results — Memory-/Backend-bound (VTune)

Surprisingly high (~80% for Phi) = “unclear” how VTune calculates these %
(Memory-bound != backend-bound =» no direct comparison BDW vs Phi)

Bounded by Memory(Xeon=blue) | Back-end(KNL=green,KNM=red)

100
80
3
o 60
g
=
8 40
3]
o
) I Il I I I
; [ | B i
< o & o & & §
& & § g & ¢ S § & $
§/ (? N F & & & & & 4{9%0
S
¢
i3 Bounded by Memory(Xeon=blue) /| Back-end(KNL=green,KNM=red)
80
3
v 60
g
c
8
o
=%
) I I II
Q \$ - \e\ e = > ~ O
< 3 § S f g & s & ¢ £ F
& & § & ¢ & & € A
& s ® ® §

Jens Domke
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Results — Roofline Analysis for Verification

Supports our previous 1000 - Theor. Peak Performance (FP64).
hypothesis that most i 2

of the proxy-/mini-apps
are memory-bound

MDYL.

Outlier: only Laghos
seems (intentionally?)é
poorly optimized =
Verifies our assumption
about optimization
status of the apps

(=» similar to other

HPC roofline plots)

KNL/KNM roofline : A \
plots show nearly 0.001 0.01 0.1 1 10 100
same reSUItS (Om|tted Arithmetic Intensity (flop/byte)

toavoidvisualclutter)

Fig. 5. Roofline plot (w.r.t dominant FP operations and DRAM bandwidth)
for Broadwell-EP reference system; Filtered proxy-apps with negligible FP
operations: MxIO, MTri, and NGSA; Proxy-app labels acc. to Section II-B

Jens Domke 41



Results — Requirement for a "\Weighted L ook™ at Results

Jens Domke

HPC resource utilization [%)

Studied HPC utilization reports of 8 centers across 5 countries

Not every app equally important (most HPC cycles dominated by

Eng. (Mech./CFD), Physics, Material Sci., QCD)

L ! oth
T bio
. s
. g

S gl
BN phy
B chm
o

Some supercomputers are “specialized”
Dedicated HPC (e.g.: weather forecast)

For system X running memory-bound apps

Why pay premium for FLOPS?
NASA applies this pragmatic approach 2

TABLEII

APPLICATION CATEGORIZATION, COMPUTE PATTERNS, AND MAIN
PROGRAMMING LANGUAGES USED; MACSi10, HPL, HPCG, AND
BABELSTREAM BENCHMARKS OMITTED

Scientific/Engineering Domain

Compute Pattem

Language

AMG Physics and Bioscience Stencil C
CANDLE Bioscience Dense matrix Python
CoMD Material Science/Engineering N-body C
Laghos Physics Irregular C++
miniAMR Geoscience/Earthscience Stencil C
miniFE Physics Irregular C++
mini TRI Mat/Computer Science Iregular Ci+
Nekbone Math/Computer Science Sparse matrix Fortan
SWilite Geoscience/Earthscience Stencil C
SWEFT Physics FFT C/Fortra
XSBench Physics [rregular C

Scientific/Engineering Domain

Compute Pattern

2'S. Saini et al., “Performance Evaluation of an Intel Haswell and Ivy Bridge-Based Supercomputer

Using Scientific and Engineering Applications,” in HPCC/SmartCity/DSS, 2016

FFB Engineering (Mechanics, CFD) | Stencil Fortran
FFVC Engineering (Mechanics, CFD) | Stencil C++/For
mVMC Physics Dense matrix C

NICAM Geoscience/Earthscience Stencil Fortran
NGSA Bioscience Iregular C
MODYLAS | Physics and Chemistry N-body Fortran
NTChem Chemistry Dense matrix Fortran
QCD Lattice QCD Stencil FortranX

) Fortran C C++ Python
;Ii-g?gl- » Modern

1oxyo ech
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@ What is meant by Convergence of HPC & Al? (s

e Acceleration of Simulation (first principles methods) with Al
(empirical method) Al for HPC Systems
e Interpolation & Extrapolation of long trajectory MD
e Reducing parameter space on Paretho optimization of results
o Adjusting convergence parameters for iterative methods etc.
e Al replacing simulation
e When exact physical models are unclear, or excessively costly to

compute
e Acceleration of Al with HPC HPC for Al (Summit, Fugaku etc.)

o HPC Processing of training data -data cleansing

o Acceleration of (Parallel) Training: Deeper networks, bigger
training sets, complicated networks, high dimensional data...

o Acceleration of Inference: above + real time streamingdata

e Various modern training algorithms: Reinforcement learning, GAN,

Dilated Convolution, etc.



> Convergence of HPC & Al inModsim Qu

RIKZN

e Performance modeling and prediction with Al
(empirical method) Al for modsim of HPCsystems

o C.f. GEMS simulation — first principle perf. modeling
o Al Interpolation & Extrapolation of system performance

o Objective categorization of benchmarks
e Optimizing system performance using machine learning

e Performance Modeling of Al esp. Machine Learning HPC
modsim techniques for Al
e Perf. modeling of Deep Neural Networks on HPC machines
e Large scaling of Deep Learning on large scale machines
o Optimization of Al algorithms using perf modeling
o Architectural survey and modeling of future Al systems
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Using Al Techniques for
Modsim of HPC



Learning Neural Representations for Predicting GPU Performance

vt
=  Motivation i , =
= New specialized chips are being ... i puren - =
introduced e.g. Fujistu’s A64FX
* A wide range of choices torun  awisens P "
scientific workloads | | ! B
u PrOblem Mappsing of applications and systems intoa EE!&Multi-layer perceptron model
M d 1 f ¢ shared latent spacing using MF using latent features
. odeling performance across systems _
with different GPU microarchitectures SR R SRR
5 40 | R S
=  Proposal S 30 | SRR .
 ~= —
= A collaborative filtering based matrix RSO R 1 I = D e
factorization (MF) approach to S 12 """"" i I == _ """"
automatically learn latent features e S — -
describing performance of applications MF MLP-1 MLP-2
on systems / , Models
= A multi-layer perceptron (MLP) to o [
model complgx npn—linear interactions 90.6% 15 ‘ :
between applications and systems prediction e ~,,, g
= Evaluation accuracy £ 7
» 30 workloads from 9 different domains achieved T .. ,’/ ’ -
= 7 GPUs ranging from Nvidia’s Kepler using MLP- 104 e ,‘ :
to Volta microarchitecture 2 B e
[ Metric to predict: IPS 2270 is .5 U/\U(_tbt.nb 10 15 20 25

Shweta Salaria, Aleksandr Drozd, Artur Podobas, Satoshi Matsuoka. Learning Neural Representations for Predicting GPU Performance. ISC High

Performance 2019 (ISC), Frankurt, Germany, June 2019



Problem Statement

® Cherry-picking aset of features may not always be good enough

Benchmarks > | System A > | Features
Stress Select —
Regression
Problem: Feature selection egressio
N
Prediction
Missing one crucial features while selecting a set of good explanatory features model

—Difficult to repeat feature selection process for each new application and system

————

47




Insight

® To leverage machine learning to build the model

Some S Some > | Features
Benchmarks Stress Systems Select -
Regression
/ Prediction
Collaborative filtering (CF) based algorithms handle model

this by identifying inter-dependencies linking
benchmarks with systems

48




Collaborative Filtering (CF): Automatic Feature Learning

X

movies database

Use Case: Movie Recommendation System 49




Problem Formulation

o Weconstruct an Mapplications x N systems matrix such as:

System 1 | System 2 | .. System N
Known
performance
App 1 score
App 2 Unknown

Scores

App M

e Known performance scores are normalized Instructions Per Second (IPS) values
e Ourgoalis to predict all the zero entries of the matrix 5
s



Experimental Setup

¢ 30 workloads from Rodinia benchmark suite and Polybench GPU
o \Workloads from 9 differentdomains

o Linear Algebra (11 workloads)

> Data Mining and Pattern Recognition (4)

> Stencils (3)

> Signal Processing (1)

> Image Processing (3)

o Simulation (3)

o Graph Traversal (3)

> Fluid and Molecular Dynamics (1)

> Bioinformatics (1)

51




Test Loss
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Prediction Error (%)

Results: Multi-Layer Perceptron

Performance: MLP-2 > MLP-1 > MF

_________ e o
|

___________ I______________________T_________________________________

___________ T TR
] I L

________________________________ |T

_______________________________________________________ L

......... L U B

MF MLP-1 MLP-2
Models

Accuracy of MF, MLP-1 and MLP-2 using IPS dataset

Model Avg. Geometric
Error Mean
MF 15.8% 7.4%
MLP-1 11.9% 6.3%
MLP-2 9.4% 6.0%
53




Classification of benchmarks by machine learning using memory access trace

Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Motivation: Select benchmarks which help to design supercomputers

“ Existing benchmark set
- Most of them are collections of benchmarks used in each field, such as
drug discovery and fluid dynamics.
- Benchmarks with the same properties may be in the same benchmark set.
“ Seven Dwarfs
- Benchmarks classification based on HPC's typical algorithm
- This is not a scientific classification method because the type of
classification is determined in a top-down design.

Select benchmarks with the by evaluating
benchmark performance.
By using

- Feature of memory access(Reuse Distance)

- Machine Learning(Classification method)



Classification of benchmarks by machine learning using memory access trace

Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo,

E

»

Classification

Satoshi Matsuoka

(H

Using Reuse Distance

Benchmarks

Check relations

v

Select representative

v
Some Computer Architectures
(Simulation)

benchmarks

,




Classification of benchmarks by machine learning using memory access trace

Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

N Background:
- The number of distinctive addresses accessed between two consecutive
uses of the same address
- Reuse Distance is an application-specific feature that does not dependon
cache or memory structure

But It takes a lot of [A,B,A g‘(% B]
memory and ——
complexity w rd=2

rd=Reuse Distance

- Reduce computational complexity using three existing research methods

- Reduce memory usage using the SSD of computational node and put
address information and calculate reuse distance

- Reduce memory usage saving Reuse Distance in the form of a histogram

4
Achieved calculation efficiency more than 1000 times



Classification of benchmarks by machine learning using memory access trace

Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

e Methodology: The length of traces of Reuse Distance is disjointed
for each benchmark
- Divide Reuse Distance histograms at equal intervals to make the number

of traces uniform
- The vector of each benchmarks is the logarithm of each frequency

bt S

10° 5
c00s0s 8080000000000 000000000 ~100 : 0006000088 -100
107 1
- 80 : - 80
106 4
u 105 >
[ =
: 10‘ % 10° 5
t 103 §
w 10‘-

10000 20000 30000 40000 50000 6000¢ 50000 100000 150000 200000
Reuse Distance Reuse Distance

-60 — :
| : ||M|ﬂ|||”|“||ﬂﬂ|"||"ﬂ| |
||II -0
7°°°° 250000

Classification method
- Use Unsupervised learning
- K-Means and VBGMM(Variational Bayesian Gaussian Mixture)
- Use 44 benchmarks
- NAS, Bots, Rodinia and so on
- Treat different input sizes as different benchmarks



Classification of benchmarks by machine learning using memory access trace

Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

. Evaluation2:
@ Evaluation1: ?
- This figure shows same clusters incolumns

- The kind of shape and color of points mean

different clusters - Experimented with three

architectures(BDW, KNL,ABCI)

- Use PCA method to map 100 dimension _
vector to 2 dimension - By change the preprgcessmg method we
want to find the relations
|L._Q‘t_5 *#-.ﬁ

10
p W .00
q . ~1756
W TS ] énin r_dw2048 . L §
o E 64 64 64 xx " . ~1.504¢
re: g W = - .
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M9 WNITH sayie3 % - R ~1.00
n L - . b
10 5_A 4 7
'~ S . 30
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0

Fi . classificati It of K-M Figure: relations between classification
igure: classifications result of K-Means result and speedup
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Modsim of AI-HPC systems



Deep Learning Meets HPC
6 orders of magnitude compute increase in5 years
[Slide Courtesy Rick Stevens @ANL]
Exascale Needs for Deep Learning
* Automated Model Discovery
* Hyper Parameter Optimization
 Uncertainty Quantification
* Flexible Ensembles
 Cross-Study Model Transfer
« Data Augmentation
« Synthetic Data Generation
* Reinforcement Learning

AlexNet to AlphaGo Zero: A 300,000x Increasein Co ute

Exaop/s-day




Predicting Statistics of Asynchronous SGDParameters for a Large-Scale
Distributed Deep Learning System on GPU Supercomputers

Background

* In large-scale Asynchronous Stochastic Gradient Descent
(ASGD), mini-batch size and gradient staleness tend to be
large and unpredictable, which increase the error of traine
DNN

A

DENSO IT LABORATORY,

)|

TSUBAME

Objective function E

Mini-batch size

Saleness=0

Twice asynchrbnous
updates within
gradient computation

Staleness=2
DNN parameters space

d

DENSO T3

Tokyo Institute of Technology

>

Proposal

We propose a empirical performance model for an ASGD
deep learning system SPRINT which considers probability
distribution of mini-batchsize and staleness

Probability

Probability
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(Nsubbateh: # Of samples per one GPUiteration)

Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGDParameters for a Large-Scale Distributed Deep Leaming System on GPU Supercomputers”, in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8,2016



R Massive Scale Deep Learningon o
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FugakuP Fugaku
¢ High perf FP16&Int8 Unprecedened DL scalability

+ High mem BWfor convolution
+ Built-in scalable Tofu network

High Performance DNN Convolution

High Performance and Ultra-Scalable Network
for massive scaling model & data parallelism

g

nlirsy
CPU
Forthe -
Fugaku
supercomputer

e JTORUNetwostwigh

injection BW for fast
reduetion

Low Precision ALU + High Memory Bandwi Unprecedented Scalability of Data/

dth + Advanced Combining of Convolution

Algorithms (FFT+Winograd+GEMM)




A64FX technologies: Core performance  Fujirsu

B High calc. throughput of Fujitsu’s original CPU core w/ SVE

W 512-bit wide SIMD x 2 pipelines and new integer functions

(GOPS) Core peak performance
500 INT8 partial dot product
400 [ ] C=2 (AixB)+C
) bt 8bit 8bit  8pit
—— )| \
300 230 >460 0] A1 A2 A3
> B B2 s B3 i
200 >115 B +
N A B E—
\ T
0 | | | 3£bit
64-bit 32-bit 16-bit  8-bit (Elementsize)
Multiply and add INT8 partial dot product

65 © 2019 FUJITSU



2021/4/22 A64fx FHECPU AMRBIE#E R (node performance)
— 4

Machine| GEMM /YT X—% Intel(R) Skylake NVIDIA Volta PRIMEHPC FX100 post-K A CPU
Precision single (JIT) single(gemm) single half single single half
core 20core 20core CUDA core TensorCore 16core x 2CMG 12core x 4CMG 12core x 4CMG
M N K efficency TFlops effficency TFlops | efficency TFlops effficency TFlops | effficency TFlops | efficency TFlops effficency TFlops
@ 512 392 4608 82.9% 2545  30.9% 0.950[ 32.7% 4.577 9.7% 10.818 74.0% 1497 79.8% 4903  79.3% 9.744
® 32 12544 4800 84.3% 2590 27.6% 0.847( 66.5% 9.311 26.4% 29.515 12.6% 0.255  50.2% 3.084  26.2% 3.219
® 512 784 4800 /// / //// 84.2% 1703 887% 5450 87.1%  10.703
@ 256 25088 64| 73.8% 2267  38.4% 1.180] 77.3% 10.815 46.9% 52.538 47.8% 0.967| 64.7% 3.975  65.0% 7.987
® 2048 3136 64/// / //// 61.8% 1250 247% 1518 48.8%  5.997
® 1024 3136 512 82.9% 2546  46.6% 1432 73.7% 10.313  234% 26.210 92.3% 1.867| 82.6% 5075 90.2%  11.084
@ 2048 1568 512 86.4% 1.747  68.3% 4196  83.3% 10.236
RE RS
- ’lsik‘};l%kfg%nce;(R) Xeon(R) Gold CPU 6148, Volta: NVIDIA Tesla V100-PCIE-16GB, FX100, Fugaku ARKRCPU®MDnode X zt) Dgemm DX &
Be LU IC .
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— Skylake Tk , JITO ./ — REEABERFL . gemm DRI E KL .
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Applying Loop Transformations/Algorithm Optimizations to Deep Learning Kernels on cuDNN [1] and ONNX [2]

* Motivation: How can we use
(FFT and Winograd) with a small
workspace memory for CNNs?

* Proposal: y-cuDNN, a wrapper library for cuDNN,
which to convolution kernels

based on DP and integer LP techniques

 Results: py-cuDNN achieves significant speedups

in multiple levels of deep learning workloads,
achieving

and
on Tesla V100
X Slow
X Large memory footprint
A
f 1
GEMM-based Wingorad FFT-based

v SR GEE | ]|
‘ ! - [ N l e
im%col ! : P Iil (l.' AT — —F _lr Fl~
ol -4 |E BB B
\_ Winograd domain y, \_ Fr ency domain y,

[]: Workspace

Convolution algorithms supported by cuDNN

* Motivation: How can we extend y-cuDNN
to support arbitrary types of layers,
frameworks and loop dimensions?

* Proposal: Apply graph transformations on
the top of the ONNX (Open Neural Network
eXchange) format

* Results: 1.41x of speedup for AlexNet on
Chainer and
Squeezing 1.2x of average speedup for
DeepBench's 3x3 kernels

Graph transformation
(loop splitting) to an
ONNX graph

AlexNet before/after the transformation

1 Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of |IEEE Cluster 2018, Belfast UK, Sep. 10-13,2018.

2(To appear) Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Applying Loop Transformations to Deep Neural Networks on ONNX, 15 B ZE LM REwRE, 2019-HPC-170. In M5/ 258U 1%

WMIBIZEETBHYY—"7—U 3 v 7 (SWoPP2019), Jul. 24-26, 2019.



U-CUDNN: Accelerating Deep Learning Frameworks with Micro-batches [1]

* Motivation: How can we use faster convolution algorithms (ex. FFT and Winograd) with a small
workspace memory for Convolutional Neural Networks (CNNs)?

* Proposal: p-cuDNN, a wrapper library for the math kernel library cuDNN which is applicable for
most deep learning frameworks
« M-cuDNN applies loop splitting by using dynamic programming and integer linear programming techniques

 Results: py-cuDNN achieves significant speedups in multiple levels of deep learning workloads

« 1.16x, 1.73x of average speedups for DeepBench's 3x3 kernels on Tesla P100 andV100 respectively
» achieves 1.45x of speedup (1.60x w.r.t. convolutions alone) for AlexNet on V100
X Slow

X Large memory
footprint

A
GEMM-based Wingorad FFT-based 4

X m Y B m v |

l max

1 3 (}UJ!'.I!L'
O mean
H median
1** quartile
im2col —~ B! G

gsumes

R |
!
¢ =
s TEANG

L ’ K80 P100-SXM2 P100-SXM2 V100-SXM2 V100-SXM2 V100-SXM:
\ Winograd domain ) \_ Frequency domain ) (half) (half) (Tensoe Cores)

. i
E 7 T T T l min. +

- ' i | 7 . ) . l l é

X' ) = | X W ] Y ‘ ’ X i o 1 ol I ot 16 s ol ) *Eﬂ?

D : Workspace Relative speedups of DeepBench’s forward convolution layers against

Convolution algorithms supported by cuDNN CuDNN

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.



Training ImageNet in Minutes

RioYokota,Kazuki Osawa,YoheiTsuiji, Yuichiro Ueno,Hiroki Naganuma,Shun lwase,Kaku Linsho,
Satoshi Matsuoka TOkyO Institute ofTechnoIogy/ Riken +Akira Naruse (NVIDIA)

#GPU time
Facebook 912 30 min
Preferred Networks 1024 15 min
UC Berkeley 2048 14 min
Tencent 2048 6.6 min
Sony (ABCI) ~3000 3.7 min
Valication Error Google (TPU/GCC) 1024 2.2 min
A MinibaBtc o C ;I"A(‘)Bkécl;Tech/NVIDlA/leen 4096 2 min

Source Ben-nun & Hoefler https://arxiv.ora/pdf/1802.09941 .pdf



Accelerating DL with 2nd Order Optimization and Distributed
raining [Tsuji et al.] => Towards 100,000 nodes scalability

| |
Background oo I D D Y D
' of DL training. ., g, peryy e [ D
° d i Stri b uted \ l“}l‘ﬂl\'l’\.‘(ll"\ l(i: 1.4['\{ \
training. Data-py>arallel Model-parallel
« > How to accelerate the training Design our distributed K-FAC
further?
= Method __
. . Goyal et al. 14076 76.3%
« Integration of two techniques: 1) e —" T =T
diStribUted Yi t I. 64K 1760 75.20/
training, and 2) ,an approx 2nd NI 7
order optimization. Ours . = el

» Evaluation and Ana |YSiS Comparison with related work (ImageNet/ResNet-50)

 Experiments on ABCI

200

supercomputer. e
.« Up to w/0 accuracy 5 .
degradation. 100
« Finish training in / "
/ in 32K batch size. | I e

Forward

« A performance tunin modeling.
P 9 / 9 Time pred/ct/on with the

Osawa et al., Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for
Deep Convolutional Neural Networks, CVPR 2019
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Fast ImageNet Training
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‘ Target 2.06 Mikeys

= g b e M Bitce Traiing "
20 on ImageNet in 35 Epochs

L} Kazuki Osawa. Yohci Tsuji. Yuichiro Ucno. Akira Narusc. Rio Yokota. Satoshi Malsuoka

4000

‘ Large-scale distributed training of deep neural networks suffer from the generalization gap caused by the
‘ increase in the effective mini-batch size. Previous approaches try to solve this problem by varying the learning
rate and batch size over epochs and layers, or some ad hoc modification of the batch normalization. We
‘ propose an alternative approach using a second-order optimization method that shows similar generalization
‘ capability to first-order methods, but converges faster and can handle larger mini-batches. To test our method
SO ny ‘ on a benchmark where highly optimized first-order methods are available as references, we train ResNet-50
on ImageNet. We converged to 75% Top-1 validation accuracy in 35 epochs for mini-batch sizes under 16,384,
and achieved 75% even with a mini-batch size of 131,072, which took 100 epochs.

®
2000 | more | pdf | html
°
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3000

Figures
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ImageNet/ResN

Yoshiki Tanaka, Hisahiro Su
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Yet Another Accelerated SGD: ResNet-50 Training
on ImageNet in 74.7 seconds

Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda, Masahiro Miwa,
Naoto Fukumoto, Tsuguchika Tabaru, Atsushi Ike, Kohta Nakashima
Fujitsu Laboratories Ld.
{m.yamazaki, kasagi.akihiko, tabuchi.akihiro, honda.takumi, masahiro.miwa,

fukumoto.naot|

Abstract—There has been a st
can execute machine learning as f: ]
of deep learning has accelerated by S in 1l

years. Distributed deep learning using the ni- isa
key technology to address the demand and ﬂ
it is difficult to achieve high scalability on

compromising accuracy. In this paper, we introduce qmmtunnn

methods which we applied to this We Nﬂ!d
training time of 74.7 seconds using zm&
applying these methods. The traini

million images/sec and the top-1 validation accuracy is 75.08%.

I. INTRODUCTIO

Deep neural network (DNN) mo
datasets are delivering impressive res
such as object detection, language t
However, the computation cost of D
larger since the sizes of DNN models
Distributed deep leamning with data p
be an effective approach to accelerate t
In this approach, all processes launc
the same DNN model and weights. E
model with different mini-batches bu
from all processes are combined to v
This communication overhead become
for large clusters. In order to reduce the overhead on large
clusters, we increase mini-batch size of DNN and compute
DNN trainings in parallel. However, the training with large
mini-batch generally results in the worse validation accuracy
of DNN models. Thus, we used several techniques to increase
mini-batch size, which denotes the number of input images
computed in an iteration, without compromising validation
accuracy.

We performed our experimental result, using 2,048 GPUs
of Al Bndging Cloud Infrastructure (ABCI) cluster and self-
optimized MXNet deep leamning framework. We achieved
75.08% validation accuracy of ResNet-50 on ImageNet using
81,920 mini-batch size in 74.7 seconds.

Il. RELATED WORKS

This section introduces the related works about the large
mini-batch challenges. Alex et al. [8] achieved high accuracy
for the image recognition in ILSVRC. This paper shows that
convolutional lavers are effective for 2D maee deen neural

jitsurt:ab

a } @ fujitsu.com

r 2D and 3D image data. loffe et
b normalization technique., in which

: 4
lhv. cature uluc\ in hidden layers are normalized to avoid

auts. In addition, this technique enables training
large number of layers, such as ResNet.
Gcncrallv the mini-batch size should be large for distributed
clusters. Goyal et al. [2] proposed the
i ep the validation accuracy with 8,192
mini-batch%ize. Google [3] and Sony (7] used the vanable
mini-batch size which becomes larger and achieved highly
xessing.
e difference between the weight gradient norm
eight norm of each layer causes the unstable of
z. LARS of [10] normalizes the difference of each
he DNN can train with 32,768 without the Joss of
accuracy.
| al. [4] achieved ResNet-50 training in 15 minutes
4 GPUs. Jia et al. [5] also achieved ResNet-50
6.6 minutes using 2,048 GPUs. Ying et al. [6]
05 million images/sec by using 1,024 TPU v3
The training times of ResNet-50 with 32,768 and
ti-batch sizes are 2.2 and 1.8 minutes, These results
rized in the table L

111. OUR APPROACH

In this section, we introduce our techniques applied to
improve both accuracy and training throughput.

A. Accuracy Improvement

We used Stochastic Gradient Descent (SGD) that is com-
monly used for deep learning optimizer. When training on
large mini-batch, the number of SGD updates decreases as
mini-batch size increases, so improving final validation accu-
racy on large mini-batch is a big challenge, and we adopted
the following techniques.

1) Learning Rate Control: We need to use high learning
rate to accelerate training due to the small number of updates.
However, high learning rate makes training of models unstable
in early stages. Thus, we stabilize SGD by using the warm-
up [2] which raises leaning rate gradually. Moreover, the
same leamine rate of all laver 1s too hieh for some lavers
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Background

m CosmoFlow[1]is a project to estimate cosmological parameters from 3-dimensional
universe data by using a 3D CNN

Input Output
(4x512%x512x512 voxels) (A vector of length 4)
.' . ldQ, % L0242
_ - _In m
—Input ~ CNN Precict » Og = 0.145
Jn H U 0489 U

. . 53 GiB

m Problem: GPU memory is too small to process high-resolution universedata
— Another way to parallelize the model efficiently?

i Lasonos Kssare el Laborsiory 2 casc NIYSH

00005 Watows’ Maciaar Secwrty AdevirGitmanoo
* 0‘05



Background

m Data-parallel training distributes data
samples among GPUs
v Good weak scalability (O(1000) GPUs)

input conv fc

GPU 1 -{__ i d Pm - I \ Back-prop.

2. All-reduce

GPU2 <" 4 ) Back-prop.

s Model-parallel training distributes the
computation of a single sample (model)
among GPUs

v~ Canusemore GPUs per sample
v~ Can train larger models

input conv fc
GPU 1 l} ............... o D

m Data-parallelism + model-parallelism = Hybrid-parallelism

‘ Lawrence Livermore National Laboratory

% " casc N A'Sg%



Proposal: Extending Distconv for 3D CNNs

m LBANN + Distconv [2]: A parallelized stencil computation-like hybrid-parallel CNN

kernel library

Input convl conv? fcl,...,3
Rank S
@ 0:.5;;: S uffle Conv. E [ Shuffle Conv. .ﬂ I“ Back prop\
Se%el ¢ et te et S > : > > ) - .
KRRRBBBII >R38 REEER _— “
e E ' ‘ Halo e L
,_2’;{:}??1% s + conv. 1
R R R R R R R L L EEEL LGS J
Sampl A Parameter gradients aggregation 4 A
prg | reload >< i (all-reduce) i I
oo Y Read | Shuffle == Conv. Shuffle Conv. FC p- A
B & 15 i ]
2RI & == Halo ex.
6. o | B 4 l
I = + conv.
S L} ] il GPU
[ Lawrence Livermore National Laboratory +: 'L ::“,. CASC “WNJ!,%%



Evaluation: Weak scaling

a Achieved 111x of speedup over 1

node by exploiting
hybrid-parallelism, even if 2 02
. . . . ()
layer-wise communication is 2
introduced )
= The 8-way partitioning is1.19x ?ﬁ o — _
of 4-way partitioning with a 2 : vy
mini-batch size of 64 ‘ o Sway(Synthetic)
W W W I I I I I I I I
‘ 1 2 4 8 163264128
H H H Number of nodes
D D D . .
4-Way 8-way 2 x2-way Figure: Weak scaling of the CosmoFlow network.

[L- Lawrence Livermore National Laboratory s o :“}. CASC NS E

0‘"" Wators’ Maciaar Secwrty AderirGtmaneo
L]



Evaluation: Strong scaling

= Achieved 2.28x of speedup on 4 nodes (16 GPUs) compared to one node when N = 1
m The scalability limit here is 8 GPUs, and the main bottleneck is input data loading

\
. ll% =
S
2 | N
Y— —,
S 4 \ﬁ< 2.28x
Q
a] =
£d g N/ m Seq. dataload
2 Q / Forward
S Backward
16 ,&\2 72 Update
| | | | |
0.0 0.1 0.2 0.3 0.4
Time [s]

Figure: Breakdown of the strong scaling experimentwhen N = 1.
IL- Lawrence Livermore National Laboratory 2 'L :3_\ CASC NVYSE

‘;"ﬁ Wators’ Maciaar Secwrty AderirGtmaneo
* 0‘05



Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqgi Zhang,Yohei Tsuiji, Satoshi Matsuoka

Motivation: GPU memory is relatively small in comparison to recent DL work load

. Foward Backward
Analysis: " ; .
Swap in swap out after 7/6|5 ]‘ 3 |2 E 0 |
precessing |
e VDNN-like Strategy Swap out 01 E 3|a|5]|6]7 TR

swap in

11 F <R B @ 09 0202020000000 - \\ o
o BB 7o (5] 5[]

7 Num_buf fer(l)/Procy(l)
max(Num_buf fer(l)/Procyy(l).Num_buf fer(l = 1)/Swap_inyy) wasted time

o Capacity based strategy Foward Backward

old Swap in HBlcONE=0 4 3
start swap in when
have free memory

-— e - e e o ot D) -

Num_buf fer(l)/Procyy(l) .
- max(Num_buf fer(l)/Procy(1).Num_buf fer(l —1)/Swap_inyy)’ new Swap in stop swap out when 211] 0
v | 7 o EEah(Proci(i) X Tymeli)) Gk i
’ Swap_inty Swap out 0 |,,1 m i




Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji, SatoshiMatsuoka

Proposal : UM-Chainer
prefetch()->explicit swap-in
OOC-Paleo no explicit swap-out
Paleo’s computation time estimation | E,Znumm
‘ B Original | UM UM-prefetch B UM-prefetch+
+
' Connection

Data transfer time estimation | Far Memory
Near Memory
+ [ e 20
| VDNN-like
Data transfer strategy - Capacity-Based
OOC-training time estimation I
’ 8 16 32 64 128 192 256 320 384

Case Study & Discussion:

BatchSize
Memory Capacity: Latency: Bandwidth: Processor:
. Not so important as . Higher Bandwidth make no . Higher connection . Slower processor is
latency and throughput sense when buffer is too small bandwidth acceptable
o Latency is decided by physical e Lower Memory bandwidth

law



Breaking the limitation of GPU memory for Deep Learning

Haoyu Zhang,Wahib Mohamed, Lingqgi Zhang,Yohei Tsuiji, Satoshi Matsuoka

Assuming we have higher Bandwidth...

Resnet50,Batch-size=128

16GB/s->64GB/s:
Training time can be half

64GB/s->128GB/s:
Only a little time reduced

>128GB/s:
Most of the layers can not make full
use of the bandwidth

>512GB/s:
Time almost do not decrease

p—— — percentage percentage
(bandwidth not full) (computation can not overlap)

16 967.8595572 | 0.409 0.733

32 569.9550342 | 0.466 0.642

64 407.2978908 | 0.574 0.472

128 371.9318064 | 0.688 0.438

256 362.5661138 | 0.835 0.398

512 359.7637498 | 0915 0.398
1024 359.3012901 | 0.983 0.386

oo 359.3012901 | 1.000 0.386
Original version | 306.9286403 | N/A N/A




Optimizing Collective Communication in DL Training (1 of 3)

» Reducing training time of large-scale AI/DL on GPUs-system.
» Time for inference = O(seconds)
» Time for training = O(hours or days)

» Computation is one of the bottleneck factors

» Increasing the batch size and learning in parallel

» Training ImageNet in 1 hour[1]
» Training ImageNet in ~20 minutes [2]

» Communication also can become a bottleneck

» Due to large message sizes

1 PGoyal, PDoll"ar, R Girshick, PNoordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, YJia, and K. He, “Accurate, large
minibatch SGD:training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,2017.
2 YYou,Z Zhang, C.Hsieh, J.Demmel, and K. Keutzer, “Imagenet training in minutes,” CoRR abs/1709.05011, 2017.



Optimizing Collective Communication in DL Training (2 of 3)
(Challenges of Large Message Size)

Compute the pradicnt GPUI GPU2 .| cPUP GPUP
G; of the weight N || . s | —.
on each GPUI s . X > —

Huge message size
(~100MB — 1GB)

GPUs communication to
compute the mean of the
gradients (Allreduce
operation)

6= Zi o GPUI GPU2 GPUP-1 GPUP
Example of Image Classification, ImageNet data set
e el
(2012) (2015) (2016) (2017)
# of gradients[1] 61M 5.5M 1.7 -60.2M 15.3 —-30M
Message size 244 MB 22MB 240 MB 120 MB

[1] T.Ben-Nun and T.Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency analysis,”
arXiv preprint arXiv:1802.09941, 2018.




Optimizing Collective Communication in DL Training (3 of 3)

Proposal: Separate intra-node and inter-node comm. =» multileader hierarchical algorithm

» Phase 1: Intra-node reduce to the node leader
» Phase 2: Inter-node all-reduce between leaders

» Phase 3: Intra-node broadcast from the leaders
Key Results:

» Cut down the communication time up to51%
» Reduce the power consumption up to32%

2(P-1) steps, send—gper step

2(P_- 1) steps,—Mp;k) perstep
k Pk

Multileader hierarchical algorithm

" Good for large message size * Optimized for inter-node comm.

=  Worse with inter-node comm.

"Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", Truong Thao Nguyen, Mohamed Wahib, Ryousei Takano, 84
Journal of Concurrency and Computation: Practice and Experience (CCPE) , Accepted: to appear in2019.10



Evaluating the HyperX Topology: ACompelling Alternative to Fat-Trees?[SC19]

T SU B 1:1 comparison (as fair as possible) of 672-node 3-level Fat-Tree and 12x8 2D HyperX

* NICsof 1stand 2™ rail even on same CPUsocket

* Given our HW limitations (few “bad” links disabled)
Full marathon worth of IB and
ethernet cables re-deployed

]

Multiple tons of ‘
equipment moved around

( 14-ary}3-tree

~Fat-Tree ) X
C

Advantages (over FT)assuming adaptive routing (AR)
* Reduced HW cost (AOC/switches) - similar perf. \
» Lower latency when scaling up (less hops) (
+ Fits rack-based packaging model for HPC/racks

* Only needs 50% bisection BWto provide 100% throughput for uniform random

\

Istrail (Fat-Tree) maintenance

Q1: Will reduced bisection BW (57% for HXvs. 2100%) impede Allreduce performance?

Full 12x8 HyperX constructeg Q2: Mitigation strategies agalnst lack of AR? (> eg placement or smart routing) Greener
And much more ... ot bt — iR T - b[c{[o,
- PXE/ diskless env ready - . on om anE H
- Spare AOCunder the floor Ra oo aw B . 5
- BIOS batteries exchanged . « D | |
= First large-scale 2.7 Pflop/s; =i
(DP) AN % "m ”"i; :
e - allatlon in the B, N T esecan -
T\ Our 2D HyperX l Fig.2: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7->672 cn (vs. “Fat-tree / ftree / linear” baseline)
24 racks (of 42 T2racks) 1. Linear good for small node counts/msg. size
+ 96 QDRswitches (+ 1strail) e (- 1%) | HyperXtopol
Swicnes (+ Istra 2. Random good for DL-relevant msg. size (*- 1%) _. s promising an
WY Gy ;326 IB cab::es (Zjo AQC) 3. Smart routing suffered SWstackissues fhe?pter a|f<t9|l;natityte
et compute nodes 4, FT+ftree had bad 448-node corner case o State-or-ihe-a
e e trard®” » 57% bisection bandwidth Fat-Tree networks!
fully connected in each dim. Funded by and in collaboration with Hewlett

[1] Domke et al. “HyperX Topology: First at-scale Implementation and Comparisonto the Fat-Tree” to be presented at SC19 and HOTI"19 II?SJCI:tkSEller E%%rﬁ[{%?\jﬁ”gn%“ ﬁ&%&y



HPC system [SCAsia 19]

= Motivation & Negative effects = Evaluating by Average Precision(AP)

1. When submitting a job, users need to estimate their job

runtime
2. If job runtime is underestimated by the users
3. Job will be terminated by HPC system upon reaching its

time limit

Wasting time and system resources.

Method

*  Apply machine learning to train models for predicting whether

the user has underestimated the job run-time

*  Using data produced by TSUBAME 2.5

Input Feature Data
Engineenng Preprocessing
Ganglia+ Feature Dropping Randomuzed
PBS Selection Nan searchCV

Label Label
i — s
it
Featare
Scaling

Building Models

Increasing time and financial cost for HPC users

Hindering the productivity of HPC users and machines

Training and
Test

Machine Learning Models for Predicting Job Run Time-Underestimationin

*
e
o

'Y}
A0e,

° .

o1

L

= Evaluating by Simulation with
Saved-Lost Rate (SLR)

5l

(e C )
o

¥ b rioa

Jug %

F1 1

Runtime-underestimated jobs can be predicted with
different accuracy and SLR at different checkpoint times

. Summing up the “Saved” time of all the applications at
best SLRs checkpoints, 24962 hours can be saved in
total with existing TSUBAME 2.5 data

. Helping HPC users to reduce time and financial loss
. Helping HPC system administrators free up computing
resources

Guo, Jian, et al. "Machine Learning Predictions for Underestimation of Job Runtime on HPC System." Asian Conference on Supercomputing Frontiers.

Springer, 2018



