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The first “exascale”  
supercomputer  

Fugaku & beyond



Arm64fx & Fugaku 富岳 /Post-K are:
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l Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU
l HPC Optimized: Extremely high package high memory BW  

(1TByte/s), on-die Tofu-D network BW (~400Gbps), high SVE FLOPS  
(~3Teraflops), various AI support (FP16, INT8, etc.)

l Gen purpose CPU – Linux, Windows (Word), other SCs/Clouds
l Extremely power efficient – > 10x power/perf efficiency for CFD  

benchmark over current mainstream x86 CPU
l Largest and fastest supercomputer to be ever built circa 2020

l >  150,000 nodes, superseding LLNLSequoia
l >  150 PetaByte/s memory BW
l Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic)
l 25~30PB NVMe L1 storage
l many endpoint 100Gbps I/O network into Lustre
l The first ‘exascale’ machine (not exa64bitflops but in apps perf.)
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Brief History of R-CCS towards Fugaku

January 2006
Next Generation Supercomputer  
Project (K  Computer) start

July 2010
RIKEN A ICS established
August 2010  
HPCI  Project start  
September 2010
K computer installation starts  
First meeting of SDHPC (Post-K)

June 2 0 1 1
# 1  on Top 500
November 2 0 1 1
# 1 on Top 500 > 10 Petaflops
ACM Gordon Bell Award
End of FY 2 0 1 1  (March 2012 )   
SDHPC Whitepaper

2006

2010

2 0 1 1

20 12

2014

April 20 12
Post-K Feasibility Study start
3  Arch Teams and 1 Apps Team 
June 2012
K computer construction complete  
September 2012
K computer production start
November 2012
ACM Gordon bell Award

April 2014
Post-K project start
June 2014
# 1 on Graph 500

2018

March 2019
Post-K Manufacturing start  
May 2019
Post-K named “Supercomputer Fugaku”  
July 2019
Post-Moore Whitepaper start  
Aug 2019
K Computer shutdown
Dec 2019
Fugaku installation start (planned)

April 2018
AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new
Director
Aug 2018
Arm A64fx announce at Hotchips  
Oct 2018
NEDO 100x processor project start
Nov 2018
Post-K Manufacturing approval by  
Prime Minister’s CST I Committee

20 1920 13

End of FY2013  (Mar 2014 )
Post-K Feasibility Study Reports



SDHPC (2011-2012) Candidate of ExaScale Architecture
https://www.exascale.org/mediawiki/images/a/aa/Talk-3-kondo.pdf

}} e.g.) K-Computer, GPU, Blue Gene,
x86-based PC-clusters

}} Capacity-Bandwidth oriented (CB)
}}With expensive memory-I/F rather than

computing capability
}} e.g.) Vector machines

}} Reduced Memory(RM)
}} With embedded (main) memory
}}e.g.) SoC, MD-GRAPE4, Anton

}} ComputeOriented (CO)
}} Many processing units
}} e.g.) ClearSpeed, GRAPE-DR

Memory  
bandwidth

}}Four types of architectures are considered
}} General Purpose(GP)

}} Ordinary CPU-based MPPs
Memory
capacity

FLOPS

CB oriented

Compute
oriented

Reduced
Memory

General
purpose

IESP Meeting@Kobe (April 12, 2012) 5

https://www.exascale.org/mediawiki/images/a/aa/Talk-3-kondo.pdf


SDHPC (2011-2012) Performance Projection

IESP Meeting@Kobe (April 12, 2012) 6

}}Performance projection for an HPC system in 2018
}} Achieved through continuous technology development
}} Constraints: 20 – 30MW electricity & 2000sqmspace

Injection P-to-P Bisection
Min
Latency

Max
Latency

High-radix
(Dragonfly)

32 GB/s 32 GB/s 2.0PB/s 200ns 1000ns

Low-radix
(4D Torus)

128GB/s 16 GB/s 0.13PB/s 100ns 5000ns

Network Storage
Total Capacity Total Bandwidth
1 EB 10TB/s
100 times larger  
than main  
memory

For saving all data
in memory to disks
within 1000-sec.

Node Performance

Total CPU  
Performance  
(PetaFLOPS)

TotalMemory  
Bandwidth  

(PetaByte/s)

TotalMemory
Capacity

(PetaByte)
Byte / Flop

General Purpose 200~400 20~40 20~40 0.1
Capacity-BW Oriented 50~100 50~100 50~100 1.0
Reduced Memory 500~1000 250~500 0.1~0.2 0.5
Compute Oriented 1000~2000 5~10 5~10 0.005



SDHPC (2011-2012) Gap Between Requirement and Technology Trends
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Needs national research project for science-driven HPC systems
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}}Mapping four architectures onto science requirement
}}Projected performance vs. science requirement

}} Big gap between projected and required performance

Mapping of Architectures Projected vs. Required Perf.
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l 3 Architecture Teams,  from identified architectural types in  
the SDHPC report
l General Purpose --- balanced
l Compute Intensive --- high flops and/or low memory capacity  

& high memory BW
l Large Memory Capacity --- also w/high memory BW

l The A64fx processor satisfied multiple roles - basically  
balanced but also compute intensive

l Application Team (Tomita, Matsuoka)
l Put all the K-Computer applications stakeholders into one room
l Templated reporting of science impact possible on exascale  

machines and their computational algorithms / requirements
l 600 page report (English summary available)

Post-K Feasibility Study (20 12 -20 13 )
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Post-K Application Feasibility Study 2012 -20 13
https: / /hpci -apl fs . r -ccs . r iken. jp/document/roadmap/roadmap_e_1405.pdf



Co-Design Activities in Fugaku

l Extremely tight collabrations between the Co-Design apps centers,
Riken, and Fujitsu, etc.

l Chose 9 representative apps as  “target application” scenario
l Achieve up to x100 speedup c.f. K-Computer
l Also ease-of-programming,  broad SW  ecosystem, very low power, …

Multiple Activities since 2011

Select representatives fr
om 100s of applications
signifying various compu
tational characteristics

Design systems with param
eters that consider various
application characteristics

Science by Computing
・9 Priority App Areas: High Concern to  
General Public: Medical/Pharma,  
Environment/Disaster, Energy,  
Manufacturing, …

Science of Computing

A 6 4 f x
For the

Post-K
supercomputer



Research Subjects of the Post-K Computer
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The post K  computer wil l  expand the fields pioneered by the K  computer, and also challenge new areas.



n Simulation of a protein in isolation
Folding simulation of Villin, a small protein  
with 36 amino acids

Protein simulation before K Protein simulation with K

ProteinsRibosome

G
R

O
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400nm
DNA  

GROEL
Ribosome

TRNA
100nm ATP

water

ion

metabolites

Genesis MD: proteins in a cell environment
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n all atom simulation of a cell interior
n cytoplasm of Mycoplasma genitalium



NICAM: Global Climate Simulation

n Global cloud resolving model with 0.87 km-mesh which allows
resolution of cumulus clouds

n Month-long forecasts of Madden-Julian oscillations in the tropics isrealized.

Global cloud resolving  
model

Miyamoto et al (2013) , Geophys. Res. Lett., 40, 4922–4926, doi:10.1002/grl.50944.
13



Mutual feedback

“Big Data Assimilation” NICAM+LETKF
High-precision Simulations

High-precision
observations

Future-generation technologies  
available 10 years in advance
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l Architectural Parameters to be determined
l #SIMD, SIMD length, #core, #NUMA node, O3 resources, specialized hardware

Co-design from Apps to Architecture

Target applications representatives of  
almost all our applications in termsof  
computational methods and  
communication patterns in order to  
design architectural features.

l cache (size and bandwidth), memory technologies
l Chip die-size, power consumption
l Interconnect

l We have selected a  set of target applications
l Performance estimation tool

l Performance projection using Fujitsu FX100 execution
profile to a set of arch. parameters.

l Co-design Methodology (at  early design  
phase)

1. Setting set of system parameters

2 . Tuning target applications under the  
system parameters

3. Evaluating execution time using prediction
tools

4. Identifying hardware bottlenecks and
changing the set of system parameters
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l Tools for performance tuning
l Performance estimation tool

l Performance projection using Fujitsu FX100
execution profile

l Gives “target” performance
l Post-K processor simulator

l Based on gem5 ,  O3,  cycle-level simulation
l Very slow, so limited to kernel-level evaluation

l Co-design of apps
l 1. Estimate “target” performance using

performance estimation tool
l 2. Extract kernel code for simulator
l 3. Measure exec time using simulator
l 4. Feed-back to code optimization
l 5. Feed-back to compiler

Co-design of Apps for Architecture

①
②

③

Perform-
ance  
estimation  
toolcd

Simulator Simulator Simulator

Asis Tuning1
Tuning2

Target
performance

Ex
ec

ut
io

n
tim

e
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l ARM SVE Vector Length Agnostic feature is very interesting, since we can  
examine vector performance using the same binary.

l We have investigated how to improve the performance of SVE keeping
hardware-resource the same. ( in “Rev-A” paper)
l ex. “512 bits SVE x 2 pipes” vs. “1024 bits SVE x 1 pipe”
l Evaluation of Performance and Power (  in “coolchips” paper) by using our gem-5  

simulator (with “white” parameter) and ARM compiler.
l Conclusion: Wide vector size over FPU element size will improve performance if there are  

enough rename registers and the utilization of FPU has room for improvement.

ARM for HPC - Co-design Opportunities
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Note that these researches are not relevantto
“post-K”architecture.
l Y. Kodama, T. Oajima and M. Sato. “Preliminary  

Performance Evaluation of Application Kernels Using  
ARM SVE with Multiple Vector Lengths”, In Re-
Emergence of Vector Architectures Workshop(Rev-
A)in 2017 IEEE International Conference on Cluster  
Computing, pp. 677-684, Sep.2017.

l T. Odajima, Y. Kodama and M. Sato, “Power  
Performance Analysis of ARM Scalable Vector  
Extension”, In IEEE Symposium on Low-Power and
High-Speed Chips and Systems (COOL Chips 21), Apr.  
2018



Post-K Activities, ISC19, Frankfurt

n TSMC 7nm FinFET & CoWoS
n Broadcom SerDes, HBM I/O, and  

SRAMs
n 8.786 billion transistors
n 594 signal pins

A64FX Leading-edge Si-technology

Copyright 2019 FUJITSU LIMITED
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1. Heritage of the K-Computer, HP in simulation via extensiveCo-Design
• High performance: up to x100 performance of K inreal applications
• Multitudes of Scientific Breakthroughs via Fugaku applicationprograms
• Simultaneous high performance andease-of-programming

2 .  New Technology Innovations of Fugaku
• High Performance,  esp.  via h igh memory  BW 

Performance boost by “factors” c.f. mainstream CPUs in many  
HPC & Society5.0 apps via BW & Vector acceleration

• Very Green e.g.  extreme power efficiency
Ultra Power efficient design & various power control knobs

• Arm Global Ecosystem &  SVE contribution
Top CPU in ARM Ecosystem of 21 billion chips/year, SVE co-
design and world’s first implementation by Fujitsu

• High Perf. on Society5.0 apps incl. A I
Architectural features for high perf on Society 5.0 apps based
on Big Data, AI/ML, CAE/EDA, Blockchain security, etc.

Fugaku: The Game Changer

ARM: Massive ecosystem
from embedded to HPC

Global leadership not just in  
the machine & apps, but as  

cutting edge IT

Technology not just limited to Fugaku, but into societal IT infrastructures e.g.Clouds



Fugaku’s FUjitsu A64fx Processor is…
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l an Many-Core ARM CPU…
l 48 compute cores +  2 or 4 assistant (OS) cores
l Brand new core design
l Near Xeon-Class Integer performance core
l ARM V8 -- - 64bit ARM ecosystem
l Tofu-D +  PCIe 3 external connection

l …but also an  accelerated GPU-like processor
l SVE 512 bit x 2 vector extensions (ARM & Fujitsu)

l Integer (1, 2, 4, 8 bytes) +  Float (16, 32, 64 bytes)
l Cache +  scratchpad-like local memory (sector cache)
l HBM2 on package memory – Massive Mem BW (Bytes/DPF ~0.4)

l Streaming memory access, strided access, scatter/gather etc.
l Intra-chip barrier synch. and other memory enhancing features

l GPU-like High performance in HPC, A I /B ig  Data,  Auto Driving…



Post-K Activities, ISC19, Frankfurt

“Fugaku” CPU Performance Evaluation (2/3)

n Himeno Benchmark (Fortran90)
n Stencil calculation to solve Poisson’s equation by Jacobi method

† “Performance evaluation of a vector supercomputer SX-aurora
TSUBASA”,

SC18, https://dl.acm.org/citation.cfm?id=3291728
Copyright 2019 FUJITSU LIMITED

G
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op
s

† †
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Post-K Activities, ISC19, Frankfurt

“Fugaku” CPU Performance Evaluation (3/3)

Copyright 2019 FUJITSU LIMITED

nWRF: Weather Research and Forecasting model
nVectorizing loops including IF-constructs is key optimization
nSource code tuning using directives promotes compiler optimizations

ｘ
ｘ

22



25 © 2019 FUJITSU

A64FX: Tofu interconnect D
n Integrated w/ rich resources

n Increased TNIs achieves higher injection BW & flexible comm. patterns
n Increased barrier resources allow flexible collective comm. algorithms

n Memory bypassing achieves low latency
n Direct descriptor & cache injection

TofuD spec
Port bandwidth 6.8 GB/s
Injection bandwidth 40.8 GB/s

Measured
Put throughput 6.35 GB/s
Ping-pong latency 0.49~0.54 µs
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FUJITSU CONFIDENTIAL

Fugaku Chassis, PCB (w/DLC), and CPU Package

CMU
A0 Chip Booted in June  

Undergoing Tests

60
mm

CPU Package

60
mm

230 mm

280
mm

CPU
A64fx

Copyright 2018 FUJITSU LIMITED

W 800㎜
D1400㎜
H2000㎜
384 nodes



Overview of Fugaku System & Storage
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l 3-level hierarchical storage
l 1st Layer: GFS Cache +  Temp FS ( 25~30 PB NVMe)
l 2nd Layer: Lustre-based GFS (a few hundred PBHDD)
l 3rd Layer: Off-site Cloud Storage

l Full Machine Spec

l >150,000 nodes
~8  million High Perf. Arm v8.2 Cores

l > 1 50PB/ s  memory BW
l Tofu-D 10x  Global IDC  traffic @ 60Pbps
l > 400 racks
l ~40 MegaWatts Machine+IDC

PUE ~  1 . 1 High Pressure DLC
l NRE pays off: ~ = 1 5~30 million

state-of-the art competing CPU
Cores for HPC workloads
(both dense and sparse problems)



PostK K

Peak DP
(double precision)

>400+ Pflops
(34x + ) 11.3 Pflops

Peak SP
(single precision)

>800+ Pflops  
(70x + ) 11.3 Pflops

Peak HP
(half precision)

>1600+ Pflops  
(141x + ) - -

Total memory
bandwidth

>150+ PB/sec
(29x + ) 5,184TB/sec

Catego
ry Priority Issue Area Performance

Speedup over K Application Brief description

H
ealth and

longevity

1. Innovativecomputing  
infrastructure for drug  
discovery

125x + GENESIS MD for proteins

2. Personalized and  
preventive medicine using big  
data

8x + Genomon Genome processing  
(Genome alignment)

D
isaster  

prevention
and  

Environm
ent

3. Integrated simulation  
systems induced by  
earthquake and tsunami

45x + GAMERA Earthquake simulator (FEM in  
unstructured & structured grid)

4. Meteorological and global  
environmental predictionusing  
big data

120x + NICAM+  
LETKF

Weather prediction system using  
Big data (structured grid stencil &  

ensemble Kalman filter)

Energy
issue

5. New technologies for  
energy creation, conversion /  
storage, and use

40x + NTChem Molecular electronic simulation  
(structure calculation)

6. Accelerated development of  
innovative clean energy  
systems

35x + Adventure
Computational Mechanics System  

for Large Scale Analysis and  
Design (unstructured grid)

Industrial  
com

petitivene s
s  

enhancem
ent

7. Creation of new functional  
devices and high-performance  
materials

30x + RSDFT Ab-initio simulation  
(density functional theory)

8. Development of innovative  
design and production  
processes

25x + FFB Large Eddy Simulation
(unstructured grid)

Basic  
science

9. Elucidation of the  
fundamental laws and  
evolution of theuniverse

25x + LQCD Lattice QCD simulation (structured  
grid Monte Carlo)

Fugaku Performance Estimate on 9 Co-Design Target Apps

p Performance target goal

ü 100 times faster than K for some applications  
(tuning included)

ü 30 to 40 MW powerconsumption

p Peak performance to be achieved

p Geometric Mean of Performance  
Speedup of the 9 TargetApplications  
over the K-Computer

>37x+
As of 2019/05/14



Transistor Lithography Scaling
(CMOS Logic Circuits, DRAM/SRAM)

Data Data
Loosely Coupled with Electronic Interconnect

Hardware/Software SystemAPIs
Flops-Centric Massively ParallelArchitecture

Flops-Centric Monolithic System Software

Novel Devices + CMOS (Dark Silicon)  
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive
3-D+Photonic Switching Interconnected

Hardware/Software SystemAPIs
“Cambrian” HeterogeneousArchitecture

Cambrian Heterogeneous System Software

Heterogeneous CPUs + Holistic DataHomogeneous General Purpose Nodes
+ Localized Data

Reconfigurable  
Dataflow Optical  

Computing
MassiveBW  
3-DPackage

Quantum
Computing

DNN&
Neuromorphic

LowPrecision  
Error-Prone

Non-Volatile  
Memory

Flops-Centric Monolithic Algorithms andApps Cambrian Heterogeneous Algorithms and Apps

Compute
Nodes GenCPU GenCPU

~2025
M-PExtinction  

Event

Many CoreEra
Post Moore  
CambrianEra

Compute
Nodes

Compute  
Nodes

Data Data
Compute
Nodes

汎用CPU GenCPU



Brief History of R-CCS towards Fugaku

January 2006
Next Generation Supercomputer  
Project (K  Computer) start

July 2010
RIKEN A ICS established
August 2010  
HPCI  Project start  
September 2010
K computer installation starts  
First meeting of SDHPC (Post-K)

June 2 0 1 1
# 1  on Top 500
November 2 0 1 1
# 1 on Top 500 > 10 Petaflops
ACM Gordon Bell Award
End of FY 2 0 1 1  (March 2012 )   
SDHPC Whitepaper

2006

2010

2 0 1 1

20 12

2014

April 20 12
Post-K Feasibility Study start
3  Arch Teams and 1 Apps Team 
June 2012
K computer construction complete  
September 2012
K computer production start
November 2012
ACM Gordon bell Award

April 2014
Post-K project start
June 2014
# 1 on Graph 500

2018

March 2019
Post-K Manufacturing start  
May 2019
Post-K named “Supercomputer Fugaku”  
July 2019
Post-Moore Whitepaper start  
Aug 2019
K Computer shutdown
Dec 2019
Fugaku insta lla tion start ( planned) 3 1

April 2018
AICS renamed to RIKEN R-CCS.
Satoshi Matsuoka becomes new
Director
Aug 2018
Arm A64fx announce at Hotchips  
Oct 2018
NEDO 100x processor project start
Nov 2018
Post-K Manufacturing approval by  
Prime Minister’s CST I Committee

20 1920 13

End of FY2013  (Mar 2014 )
Post-K Feasibility Study Reports
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l New A I methodologies and architectures – how do we  
deal with them?

l Post-Moore speedup methodologies
l FLOPS no longer free – towards BW-centric?
l Extreme heterogeneity - neuromorphic, (pseudo-) quantum
l Severe power constraints and high failure rates

l Methodological questions
l How do we modsim new computing models?
l Are we picking the right benchmarks for modsim – (not  

contrived? C.f. Berkely “Motifs”)
l Are we using the right modsim technologies – are we stuck  

on first principle simuations?
l How do we modsim inexact systems – perf variations,

frequent failures, inexact calculations, etc.

Retrospect – have we done the right mods im?



Double-precision FPUs in  
High-Performance Computing:
An Embarrassment of Riches?

SatoshiMATSUOKALaboratory 
Dept.ofMath.andComputeSci. 

TokyoInstituteofTechnology

Jens33Domke, Dr.33rd IEEE IPDPS, 21. May 2019, Rio de Janeiro, Brazil



Jens Domke

Motivation and Initial Question (To float … or not to float …?)

Thanks to the (curse of) the TOP500 list, the HPC community (and vendors)
are chasing higher FP64 performance, thru frequency, SIMD, more FP units,…

Motivation:
Less FP64 units

Resulting Research Questions:

Q1: How much do HPC workloads actually depend on FP64 instructions?

Q2: How well do our HPC workloads utilize the FP64units?

Q3: Are our architectures well- or ill-balanced: more FP64, or FP32, Integer,
memory?

… and …

Q4: How can we actually verify our hypothesis, that we need less FP64 and
should invest $ and chip area in more/faster FP32 units and/ormemory)?

34

Saves power
Free chip area (for e.g.: FP16)

Less divergence of “HPC-capable”
CPUs from mainstream processors



Approach and Assumptions

Idea/Methodology
Compare two similar chips; different balance in FPUs

Use ‘real’ applications running on current/next-gen. machines

è Which?

è Which?

Assumptions
Our HPC (mini-)apps are well-optimized

– Appropriate compiler settings

– Used in procurement of next gen. machines (e.g. Summit, Post-K,…)

– Mini-apps: Legit representative of the priority applications 1

We can find two chips which are similar

– No major differences (besides FP64 units)
– Aside from minor differences we know of (…more on next slide)  

The measurement tools/methods are reliable

– Make sanity checks (e.g.: use HPL and HPCG as reference)
1 Aaziz et at, “A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”, in IEEE Cluster 2018

Jens Domke 35



Jens Domke

Methodology – CPU Architectures

Two very similar CPUs with large difference in FP64 units
Intel dropped 1 DP unit for 2x SP and 4x VNNI (similar to Nvidia’s TensorCore)  

Vector Neural Network Instruction (VNNI) supports SP floating point and mixed
precision integers (16-bit input/32-bit output)ops

è KNM: 2.6x higher SP peak performance and 35% lower DP peak perf.

(Figure source: https://www.servethehome.com/intel-knights-mill-for-machine-learning/) 36

http://www.servethehome.com/intel-knights-mill-for-machine-learning/)


Jens Domke

Methodology – Benchmarks and Execution Environment

23 mini-apps used in procurement process of next-gen machines

37

ECP Workload Post-K Workload

AMG Algebraic multigrid solver for unstructured grids CCS QCD Linear equation solver (sparse matrix) for lattice
chromodynamics (QCD) problem

CANDLE DL predict drug response based on molecular  
of tumor cells

FFVC Solves the 3D unsteady thermal flow ofthe  
incompressible fluid

CoMD Generate atomic transition pathways between any two  
structures of a protein

NICAM Benchmark of atmospheric general circulation model
reproducing the unsteady baroclinicoscillation

Laghos Solves the Euler equation of compressiblegas mVMC Variational Monte Carlo method applicable for a wide  
range of Hamiltonians for interacting fermionsystems

MACSio Scalable I/O Proxy Application NGSA Parses data generated by a next-generation genome  
sequencer and identifies genetic differences

miniAMR Proxy app for structured adaptive mesh refinement (3D  
stencil) kernels used by many scientificcodes

MODYLAS Molecular dynamics framework adopting the fast  
multipole method (FMM) for electrostatic interactions

miniFE Proxy for unstructured implicit finite element or finite
volume applications

NTChem Kernel for molecular electronic structure calculation of
standard quantum chemistry approaches

miniTRI Proxy for dense subgraph detection, characterizing
graphs, and improving community detection

FFB Unsteady incompressible Navier-Stokes solver by
element method for thermal flow simulations

Nekbone High order, incompressible Navier-Stokes solver
spectral element method

Bench Workload

SW4lite Kernels for 3D seismic modeling in 4th order HPL Solves dense system of linear equations Ax =b

SWFFT Fast Fourier transforms (FFT) used in by Hardware
Accelerated Cosmology Code (HACC)

HPCG Conjugate gradient method on sparsematrix

XSBench Kernel of the Monte Carlo neutronics app: OpenMC Stream Throughput measurements of memorysubsystem



Jens Domke

Results – Compare Time-to-Solution in Solver

Only 3 apps seem to suffer from missing DP (MiniTri: no FP; FFVC: only int+FP32)

VNNI may help with CANDLE perf. on KNM;  
NTChem improvement unclear

KNL overall better (due to 100MHz freq. incr.?)

Memory throughput on Phi (in cache mode)  
doesn’t reach peak of flat mode
(only ~86% on KNL; ~75% on KNL)

Note: MiniAMR not strong-scaling è limited comparability
38

KNL
baseline



Jens Domke

Results – Compare Gflop/s in Comp. Kernel/Solver

39

8 apps out of 18: less Gflop/s on Phi than on BDW (ignoring I/O & Int-based apps)

All apps (ignoring HPL) with low FP efficiency:
≤ 21.5% on BDW,  ≤ 10.5% on KNL,  ≤ 15.1% on KNM (Why? è next slides)

Phi performance comes from higher peak flop/s, Iop/s and/or fasterMCDRAM?

Relative  
perf. over  
BDW
baseline

Absolute  
Gflop/s perf.  
compared to  
theor. peak

20% of
theor. peak



Jens Domke

Results – Memory-/Backend-bound (VTune)

Surprisingly high (~80% for Phi) è “unclear” how VTune calculates these %
(Memory-bound != backend-bound èno direct comparison BDW vs Phi)

40



Jens Domke

Results – Roofline Analysis for Verification

41

Supports our previous  
hypothesis that most  
of the proxy-/mini-apps  
are memory-bound

Outlier: only Laghos  
seems (intentionally?)  
poorly optimized

Verifies our assumption  
about optimization  
status of the apps
(è similar to other
HPC roofline plots)

KNL/KNM roofline  
plots show nearly  
same results (omitted  
toavoidvisualclutter)



Jens Domke

Results – Requirement for a “Weighted Look” at Results

Studied HPC utilization reports of 8 centers across 5 countries

Not every app equally important (most HPC cycles dominated by  
Eng. (Mech./CFD), Physics, Material Sci., QCD)

Some supercomputers are “specialized”
– Dedicated HPC (e.g.: weather forecast)  

For system X running memory-bound apps

– Why pay premium for FLOPS?

– NASA applies this pragmatic approach 2

2 S. Saini et al., “Performance Evaluation of an Intel Haswell and Ivy Bridge-BasedSupercomputer
Using Scientific and Engineering Applications,” in HPCC/SmartCity/DSS, 2016
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What is meant  by Convergence of HPC & A I ?

43

l Acceleration of Simulation (first principles methods) with A I   
(empirical method) AI for HPCSystems
l Interpolation & Extrapolation of long trajectory MD
l Reducing parameter space on Paretho optimization of results
l Adjusting convergence parameters for iterative methods etc.

l AI  replacing simulation
l When exact physical models are unclear, or excessively costly to  

compute
l Acceleration of A I  with HPC HPC for AI (Summit, Fugaku etc.)

l HPC Processing of training data -data cleansing
l Acceleration of (Parallel) Training: Deeper networks, bigger  

training sets, complicated networks, high dimensional data…
l Acceleration of Inference: above +  real time streaming data
l Various modern training algorithms: Reinforcement learning, GAN,

Dilated Convolution, etc.



Convergence of HPC &  A I  in Modsim

44

l Performance model ing and prediction with A I   
(empirical  method) AI  for modsim of HPCsystems
l C.f. GEM5 simulation – first principle perf. modeling
l AI Interpolation & Extrapolation of system performance
l Objective categorization of benchmarks
l Optimizing system performance using machine learning

l Performance Modeling of A I esp. Machine Learning HPC  
modsim techniques for AI
l Perf. modeling of Deep Neural Networks on HPC machines
l Large scaling of Deep Learning on large scale machines
l Optimization of AI algorithms using perf modeling
l Architectural survey and modeling of future AI systems
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Using A I  Techniques for  
Modsim of HPC



Learning Neural Representations for Predicting GPU Performance

§ Motivation
§ New specialized chips are being

introduced e.g. Fujistu’sA64FX
§ A wide range of choices to run  

scientific workloads
§ Problem

§ Modeling performance across systems
with different GPU microarchitectures

§ Proposal
§ A collaborative filtering based matrix  

factorization (MF) approach to  
automatically learn latent features  
describing performance of applications  
on systems

§ A multi-layer perceptron (MLP) to  
model complex non-linear interactions  
between applications and systems

§ Evaluation
§ 30 workloads from 9 different domains
§ 7 GPUs ranging from Nvidia’s Kepler  

to Volta microarchitecture
§ Metric to predict: IPS

Application

System

Application  
LatentVector

System  
LatentVector

Application  
Embeddings

L
a
y

r

1

L
a

r

2

Concatenatione

L
a

e e
r

N

y ��� y predicted  
score

Multi-LayerPerceptron

ReLU ReLU ReLU

Shweta Salaria, Aleksandr Drozd, Artur Podobas, Satoshi Matsuoka. Learning Neural Representations for Predicting GPU Performance. ISC High
Performance 2019 (ISC), Frankurt, Germany, June 2019

m 
(applications)

n  
(systems)

r
(latentfeatures)

m r

�

n

? a

s

a

s

Mapping of applications and systems intoa
shared latent spacing using MF

System
Embeddings Multi-layer perceptron model

using latent features

90.6%
prediction  
accuracy  
achieved  

using MLP-
2



Problem Statement

● Cherry-picking a set of features may not always be goodenough

Problem: Featureselection

Missing one crucial features while selecting a set of good explanatory features

Difficult to repeat feature selection process for each new application and system
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System A FeaturesBenchmarks
Stress Select

Prediction
model

Regression



Insight

● To leverage machine learning to build the model

48

Some  
Benchmarks

Some  
Systems

Features
Stress Select

Prediction
model

Regression

Collaborative filtering (CF) based algorithms handle  
this by identifying inter-dependencies linking  
benchmarks with systems



Collaborative Filtering (CF): Automatic Feature Learning

49Use Case: Movie RecommendationSystem

movies

preference preferencessimilar

movies

database

x

N



Problem Formulation
● We construct an M applications x N systems matrix suchas:

● Known performance scores are normalized Instructions Per Second (IPS) values
● Our goal is to predict all the zero entries of the matrix 50

System 1 System 2 .. System N

App 1

App 2

..

App M

Known  
performance  
score

Unknown
scores



Experimental Setup

• 30 workloads from Rodinia benchmark suite and Polybench GPU
● Workloads from 9 differentdomains

○ Linear Algebra (11 workloads)
○ Data Mining and Pattern Recognition (4)
○ Stencils (3)
○ Signal  Processing(1)
○ Image  Processing (3)
○ Simulation (3)
○ Graph Traversal (3)
○ Fluid and Molecular Dynamics (1)
○ Bioinformatics (1)
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Results: Multi-Layer Perceptron
Performance: MLP-2 > MLP-1 > MF

53
Accuracy of MF, MLP-1 and MLP-2 using IPS dataset

Model Avg.  
Error

Geometric  
Mean

MF 15.8% 7.4%

MLP-1 11.9% 6.3%

MLP-2 9.4% 6.0%



Classification of benchmarks by machine learning using memory access trace
Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Motivation: Select benchmarks which help to design supercomputers

Existing benchmark set
- Most of them are collections of benchmarks used in each field, such as  

drug discovery and fluid dynamics.
- Benchmarks with the same properties may be in the same benchmark set.
Seven Dwarfs
- Benchmarks classification based on HPC’s typical algorithm
- This is not a scientific classification method because the type of

classification is determined in a top-down design.

Select benchmarks with the bottom up design by evaluating
benchmark performance.
By using
- Feature of memory access(Reuse Distance)
- Machine Learning(Classification method)



Classification of benchmarks by machine learning using memory access trace
Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Some Computer Architectures  
(Simulation)

Classification

Using Reuse Distance

Benchmarks

Check relations
Select representative

benchmarks



Efficient calculation of Reuse Distance
- Reduce computational complexity using three existing research methods
- Reduce memory usage using the SSD of computational node and put  

address information and calculate reuse distance
- Reduce memory usage saving Reuse Distance in the form of a histogram

Classification of benchmarks by machine learning using memory access trace
Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Background: Reuse Distance
- The number of distinctive addresses accessed between two consecutive  

uses of the same address
- Reuse Distance is an application-specific feature that does not depend on

cache or memory structure
rd=1 rd=0

But It takes a lot of  
memory and  
complexity

[A,B,A,C,C,B]
rd=2
t

rd=Reuse Distance

Achieved calculation efficiency more than 1000 times



Classification of benchmarks by machine learning using memory access trace
Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Classification method
- Use Unsupervised learning

- K-Means and VBGMM(Variational Bayesian Gaussian Mixture)
- Use 44 benchmarks

- NAS, Bots, Rodinia and so on
- Treat different input sizes as different benchmarks

Methodology: The length of traces of Reuse Distance is disjointed  
for each benchmark

- Divide Reuse Distance histograms at equal intervals to make the number
of traces uniform

- The vector of each benchmarks is the logarithm of each frequency



Classification of benchmarks by machine learning using memory access trace
Toshiki Tsuchikawa, Toshio Endo, Yosuke Oyama, Akihiro Nomura, Masaaki Kondo, Satoshi Matsuoka

Evaluation1: Classify by K-Means(8Classes)
- This figure shows same clusters incolumns
- The kind of shape and color of points mean

different clusters
- Use PCA method to map 100 dimension

vector to 2 dimension

Evaluation2: Investigate relations  
between clustering results and some  
architecture specifications

- Experimented with three
architectures(BDW, KNL,ABCI)

- By change the preprocessing method we
want to find the relations

Figure: classifications result of K-Means
Figure: relations between classification  

result and speedup
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Modsim of A I -HPC systems



Deep Learning Meets HPC
6 orders of magnitude compute increase in5 years

[Slide Courtesy Rick Stevens @ANL]

Exascale Needs for DeepLearning
• Automated Model Discovery
• Hyper Parameter Optimization
• Uncertainty Quantification
• Flexible Ensembles
• Cross-Study Model Transfer
• DataAugmentation
• Synthetic Data Generation
• Reinforcement Learning

Exaop/s-day



Predicting Statistics of Asynchronous SGD Parameters fora Large-Scale  
Distributed Deep Learning System onGPU Supercomputers

Background

W(t)

W(t+1)
W(t+1)

-ηΣi ∇E i

W(t+3)

W(t+2)

Twice asynchronous  
updates within  

gradient computation

Staleness=2
DNN parameters space

Objective functionE

Mini-batch size
Staleness=0

-ηΣi ∇E i
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Proposal
• In large-scaleAsynchronousStochastic Gradient Descent •  

(ASGD), mini-batch size and gradient staleness tend to be  
large and unpredictable, which increase the error of trained  
DNN

We propose a empirical performance model for an ASGD
deep learning system SPRINTwhich considers probability
distribution of mini-batchsizeand staleness

Mini-batch size Staleness

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of  
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of  
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8,2016
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FugakuProcessor
◆ High perf FP16&Int8
◆ High mem BW for convolution
◆ Built-in scalable Tofunetwork

Unprecedened DLscalability

High Performance DNNConvolution

High Performance and Ultra-ScalableNetwork  
for massive scaling model &data parallelism

Massive Scale Deep Learning on  
Fugaku

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

TOFU Networkw/high
injection BW for fast
reduction  

Low Precision ALU +  High Memory Bandwi Unprecedented Scalability of Data/  
dth +  Advanced Combining of Convolution
Algorithms (FFT+Winograd+GEMM)
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A64FX technologies: Core performance

A0 A1 A2 A3

B0 B1 B2 B3
X X X X

8bit 8bit 8bit 8bit

C

32bit

n High calc. throughput of Fujitsu’s original CPU core w/ SVE
n 512-bit wide SIMD x 2 pipelines and new integer functions

INT8 partial dot product
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2021/4/22 A64fx 試作CPU A版測定結果(node performance)

66

• 測定条件
– Skylake: Intel(R) Xeon(R) Gold CPU 6148, Volta: NVIDIA Tesla V100-PCIE-16GB, FX100, Fugaku A版CPUのnode当たりのgemmの効率と

性能を比較した．
– FX100，Fugaku A版CPUの測定は1CMGで行っており，node性能は換算している．
– Skylakeの①,②,④,⑥並びにVolta CUDA coreの測定パターン①では，img2colなどの前後処理を含む．
– ピーク性能は，Skylakeが3.072TFlops, Volta CUDA coreは単精度14TFlops, Volta TensorCoreは半精度112TFlops, FX100は1node単精度

2.0224TFlops，Fugakuは，1node単精度6.144TFlops, 半精度12.288TFlopsである．
• 結果

– Volta CUDA core単精度での効率が高い．逆にTensorCore半精度ではピーク性能が8倍であるため，性能は上がるが，効率は相対的に低い．
– Skylakeでは，JITのノード性能が概ね高い．gemmの効率は低い．
– Fugaku試作A版CPUでの効率は，SkylakeでのJIT効率やVolta のCUDA coreでの効率と同程度である．
– Fugaku試作A版CPUでの半精度効率は，概ね単精度と同程度の効率である．
– gemmのM次元を大きくするMN次元のバランシングを行ったものが，②→③，④→⑤，⑥→⑦である．性能が低い②は，バランシングの効果が高い

ことが分かる．Fugakuの性能値としては，バランシング前後で良い方の性能が出ると考えて良い．

– Isopower (電力一定)では、A64fx 2個 ~ = Volta 1個程度であり、その補正を行うと、SingleでもTensorCore比較においても、①では2倍の性能、
⑥ではほぼ同等の性能となる。一方、②④では負ける。

– 今後、MLのフルスタックを実装し、更に最適化を行ってMLPerfなどの実環境ベンチを行う予定

* A64fxは NVIDIA Volta v100 GPUに対し機械学習において⼗分⽐較しうる競争⼒があると予想される

Machine GEMM パラメータ Intel(R) Skylake NVIDIA Volta PRIMEHPC FX100 post-K A CPU
Precision single (JIT) single(gemm) single half single single half

core 20core 20core CUDA core TensorCore 16core x 2CMG 12core x 4CMG 12core x 4CMG
M N K effficency TFlops effficency TFlops effficency TFlops effficency TFlops effficency TFlops effficency TFlops effficency TFlops

① 512 392 4608 82.9% 2.545 30.9% 0.950 32.7% 4.577 9.7% 10.818 74.0% 1.497 79.8% 4.903 79.3% 9.744
② 32 12544 4800 84.3% 2.590 27.6% 0.847 66.5% 9.311 26.4% 29.515 12.6% 0.255 50.2% 3.084 26.2% 3.219
③ 512 784 4800 84.2% 1.703 88.7% 5.450 87.1% 10.703
④ 256 25088 64 73.8% 2.267 38.4% 1.180 77.3% 10.815 46.9% 52.538 47.8% 0.967 64.7% 3.975 65.0% 7.987
⑤ 2048 3136 64 61.8% 1.250 24.7% 1.518 48.8% 5.997
⑥ 1024 3136 512 82.9% 2.546 46.6% 1.432 73.7% 10.313 23.4% 26.210 92.3% 1.867 82.6% 5.075 90.2% 11.084
⑦ 2048 1568 512 86.4% 1.747 68.3% 4.196 83.3% 10.236



Applying Loop Transformations/Algorithm Optimizations to Deep Learning Kernels on cuDNN [1] and ONNX [2]
• Motivation: How can we use faster convolution  

algorithms (FFT and Winograd) with a small  
workspace memory for CNNs?

• Proposal: μ-cuDNN, a wrapper library for cuDNN,  
which applies loop splitting to convolution kernels  
based on DP and integer LP techniques

• Results: μ-cuDNN achieves significant speedups  
in multiple levels of deep learning workloads,  
achieving 1.73x of average speedups for  
DeepBench's 3×3  kernels and 1.45x of speedup  
for AlexNet on Tesla V100

✗ Slow
✓ Small memory footprint

✓ Fast
✗ Large memory footprint

Convolution algorithms supported by cuDNN
1 Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.
2(To appear) Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Applying Loop Transformations to Deep Neural Networks on ONNX, 情報処理学会研究報告, 2019-HPC-170. In 並列/ 分散/協調
処理に関するサマーワークショップ(SWoPP2019), Jul. 24-26, 2019.

• Motivation: How can we extend μ-cuDNN  
to support arbitrary types of layers,  
frameworks and loop dimensions?

• Proposal: Apply graph transformations on  
the top of the ONNX (Open Neural Network  
eXchange) format

• Results: 1.41x of speedup for AlexNet on  
Chainer only with graph transformation and  
Squeezing 1.2x of average speedup for  
DeepBench's 3x3 kernels by multi-level  
splitting

Graph transformation  
(loop splitting) to an  

ONNX graph

55.7 ms
(Forward)

AlexNet before/after the transformation

39.4 ms  
(Forward)



μ-cuDNN: Accelerating Deep Learning Frameworks with Micro-batches [1]

• Motivation: How can we use faster convolution algorithms (ex. FFT and Winograd) with a small  
workspace memory for Convolutional Neural Networks (CNNs)?

• Proposal: μ-cuDNN, a wrapper library for the math kernel library cuDNN which is applicable for  
most deep learning frameworks

• μ-cuDNN applies loop splitting by using dynamic programming and integer linear programming techniques 

• Results: μ-cuDNN achieves significant speedups in multiple levels of deep learning workloads
• 1.16x, 1.73x of average speedups for DeepBench's 3×3  kernels on Tesla P100 andV100 respectively
• achieves 1.45x of speedup (1.60x w.r.t. convolutions alone) for AlexNet on V100
✗ Slow
✓ Small memory  

footprint

✓ Fast
✗ Large memory  

footprint

Relative speedups of DeepBench’s forward convolution layers  against
cuDNNConvolution algorithms supported by cuDNN

[1] Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka, Accelerating Deep Learning Frameworks with Micro-batches, In proceedings of IEEE Cluster 2018, Belfast UK, Sep. 10-13, 2018.



Training ImageNet inMinutes

TSUBAME3.0 ABCI

Source Ben-nun & Hoefler https://arxiv.org/pdf/1802.09941.pdf

RioYokota,Kazuki Osawa,YoheiTsuji,Yuichiro Ueno,Hiroki Naganuma,Shun Iwase,KakuLinsho,
SatoshiMatsuoka Tokyo Institute ofTechnology/Riken +Akira Naruse (NVIDIA)

#GPU time
Facebook 512 30 min
Preferred Networks 1024 15 min
UCBerkeley 2048 14 min
Tencent 2048 6.6 min
Sony (ABCI) ~3000 3.7 min
Google (TPU/GCC) 1024 2.2 min
TokyoTech/NVIDIA/Riken
(ABCI) 4096 ?min



Accelerating DL with 2nd Order Optimization and Distributed  
Training [Tsuji et al.] => Towards 100,000 nodes scalability

§ Background
• Large complexity of DL training.
• Limits of data-parallel distributed

training.
• > How to accelerate the training

further?

§ Method
• Integration of two techniques: 1) 

data- and model-parallel distributed  
training, and 2) K-FAC, an approx 2nd 

order optimization.

§ Evaluation and Analysis
• Experiments on ABCI  

supercomputer.
• Up to 128K batch size w/o accuracy

degradation.
• Finish training in 35 epochs/10  

min/1024 GPUs in 32K batch size.
• A performance tuning / modeling.

Osawa et al., Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for 
Deep  Convolutional Neural Networks, CVPR 2019

Time prediction with the performance model

Data-parallel Model-parallel

Design our hybrid parallel distributed K-FAC

Batch size # Iterations Accuracy

Goyal et al. 8K 14076 76.3%

Akiba et al. 32K 3519 75.4%

Ying et al. 64K 1760 75.2%

Ours 128K 978 75.0%

Comparison with related work (ImageNet/ResNet-50)



Fast ImageNet Training
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ImageNet/ResN world record)
Yoshiki Tanaka, Hisahiro Su yama Sony Corporation
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CNN withHybrid Parallelization
The 1st Workshop on Parallel and Distributed MachineLearning 2019 (PDML’19) – Kyoto, Japan
YosukeOyama 1,2,*, NaoyaMaruyama2, Nikoli Dryden 3,2, Peter Harrington 4, Jan Balewski 4, SatoshiMatsuoka 5,1, Marc Snir 3, Peter Nugent 4, andBrian Van Essen2

mailto:oyama.y.aa@m.titech.ac.jp


Background

CosmoFlow[1]is a project to estimate cosmological parameters from 3-dimensional
universe data by using a 3D CNN

CNN
53 GiB

8σ,

Ω,
m

=
n,

s

−0.242

0.145
−0.489

Input Predict

Input
(4×512×512×512 voxels)

Output
(A vector of length 4)

Problem: GPU memory is too small to process high-resolution universedata
→ Another way to parallelize the model efficiently?



Background

Data-parallel training distributes data  
samples among GPUs
✓ Good weak scalability (O(1000)GPUs)

1.

2.

input
GPU 1

GPU 2

conv fc
Back-prop.

All-reduce

Back-prop.

Model-parallel training distributes the  
computation of a single sample (model)  
among GPUs
✓ Canusemore GPUspersample
✓ Can train larger models

input conv fc
GPU 1

Haloexchange

GPU 2

Data-parallelism + model-parallelism = Hybrid-parallelism



Proposal: Extending Distconv for 3D CNNs

LBANN + Distconv [2]: A parallelized stencil computation-like hybrid-parallel CNN
kernel library
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Evaluation: Weak scaling

Achieved 111x of speedup over 1  
node by exploiting
hybrid-parallelism, even if  
layer-wise communication is  
introduced
The 8-way partitioning is1.19x  
of 4-way partitioning with a  
mini-batch size of 64
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Figure: Weak scaling of theCosmoFlow network.



Evaluation: Strong scaling
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Achieved 2.28x of speedup on 4 nodes (16 GPUs) compared to one node when N = 1
The scalability limit here is 8 GPUs, and the main bottleneck is input data loading
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Time [s]
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2.28x

Figure: Breakdown of the strong scaling experiment when N = 1.



Motivation: GPU memory is relatively small in comparison to recent DL work load

Analysis:

● vDNN-like strategy

● Capacity based strategy

Breaking the limitation of GPU memory for Deep Learning
Haoyu Zhang,Wahib Mohamed, Lingqi Zhang,Yohei Tsuji,Satoshi Matsuoka



Case Study & Discussion:
Memory Capacity:

● Not so important as
latency and throughput

Bandwidth:
●

●

Higher connection
bandwidth
Lower Memory bandwidth

Latency:
●

●

Higher Bandwidth make no  
sense when buffer is toosmall  
Latency is decided byphysical  
law

Processor:
● Slower processor is

acceptable

Proposal： UM-Chainer
prefetch()->explicit swap-in  
no explicit swap-out
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Assuming we have higher Bandwidth...

Resnet50,Batch-size=128  

16GB/s->64GB/s:
Training time can be half

64GB/s->128GB/s:
Only a little time reduced

>128GB/s:
Most of the layers can not make full
use of the bandwidth

>512GB/s:
Time almost do not decrease



1 P. Goyal, P. Dolĺ ar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch SGD: training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,2017.
2 Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” CoRR, abs/1709.05011,2017.

Optimizing Collective Communication in DL Training (1 of 3)

Ø Reducing training time of large-scale AI/DL on GPUs-system.
Ø Time for inference = O(seconds)
Ø Time for training = O(hours or days)

Ø Computation is one of the bottleneck factors
Ø Increasing the batch size and learning in parallel

Ø Training ImageNet in 1 hour [1]
Ø Training ImageNet in ~20 minutes [2]

Ø Communication also can become a bottleneck
Ø Due to large message sizes



Model AlexNet
(2012)

GoogleNet
(2015)

ResNet
(2016)

DenseNet
(2017)

# of gradients [1] 61M 5.5M 1.7 –60.2M 15.3 –30M
Message size 244 MB 22MB 240 MB 120 MB

Huge message size
(~100MB – 1GB)

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrencyanalysis,”
arXiv preprint arXiv:1802.09941, 2018.

Example of Image Classification, ImageNet data set

Optimizing Collective Communication in DL Training (2 of 3)  
(Challenges of Large Message Size)
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Proposal: Separate intra-node and inter-node comm. è multileader hierarchical algorithm

Ø Phase 1: Intra-node reduce to the node leader
Ø Phase 2: Inter-node all-reduce between leaders
Ø Phase 3: Intra-node broadcast from the leaders
Key Results:

Ø Cut down the communication time up to 51%
Ø Reduce the power consumption up to 32%

Multileader hierarchical algorithm
• Optimized for inter-node comm.

Ring-based algorithm
§ Good for large message size
§ Worse with inter-node comm.

𝑃
2(P-1) steps, send 𝑁per step 2(𝑃-1) steps, 𝑁(𝑝−𝑘)per step

𝑘 𝑃𝑘

"Efficient MPI-Allreduce for Large-Scale Deep Learning on GPU-Clusters", Truong Thao Nguyen, Mohamed Wahib, Ryousei Takano,  
Journal of Concurrency and Computation: Practice and Experience (CCPE) , Accepted: to appear in 2019.10

Optimizing Collective Communication in DL Training (3 of 3)



Evaluating the HyperX Topology: A Compelling Alternative to Fat-Trees?[SC19]

[1] Domke et al. “HyperXTopology: First at-scale Implementationand Comparisonto the Fat-Tree” to be presentedat SC’19and HOTI’19

Full marathon worth of IB and
ethernet cables re-deployed

Multiple tons of
equipment moved around

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

And much more …
- PXE /  diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

HyperX inst
world!

è First large-scale 2.7 Pflop/s  
(DP)

allation in the
Our 2D HyperX:
• 24 racks (of 42 T2racks)
• 96 QDR switches (+ 1strail)
• 1536 IB cables (720AOC)
• 672 computenodes
• 57% bisection bandwidth

1:1 comparison (as fair as possible) of 672-node 3-level Fat-Tree and 12x8 2D HyperX
• NICs of 1st and 2nd rail even on same CPUsocket
• Given our HW limitations (few “bad” links disabled)

Advantages (over FT) assuming adaptive routing (AR)
• Reduced HW cost (AOC/switches) àsimilar perf.
• Lower latency when scaling up (lesshops)
• Fits rack-based packaging model for HPC/racks
• Only needs 50% bisection BW to provide 100% throughput for uniform random

Fig.1: HyperX with n-dim. integer 
lattice (d ,…,d ) base structure1 n
fully connected in each dim.

1. Linear good for small node counts/msg.size
2. Random good for DL-relevant msg. size (+ − 1%)
3. Smart routing suffered SW stackissues
4. FT + ftree had bad 448-node cornercase

1.

Q1: Will reduced bisection BW (57% for HX vs. ≥100%) impede Allreduce performance?
Q2: Mitigation strategies against lack of AR? (à eg. placement or smart routing)

2.

3.
Fig.2: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7à672 cn (vs. “Fat-tree / ftree / linear”baseline)

4.

HyperXtopology  
is promising and
cheaperalternative  
to state-of-the-art  
Fat-Treenetworks!

Funded by and in collaboration with Hewlett
Packard Enterprise, and supported by
Fujitsu, JSPSKAKENHI,and JSPCREST



Machine Learning Models for Predicting Job Run Time-Underestimationin  
HPC system [SCAsia 19]

1. When submitting a job, users need to estimate their job  
runtime

2. If job runtime is underestimated by the users

3. Job will be terminated by HPC system upon reaching its
time limit

Increasing time and financialcost for HPC users

Wasting time and system resources.

•

•

• Hindering the productivity of HPC users and machines

§ Method

Guo, Jian, et al. "Machine Learning Predictions for Underestimation of Job Runtime on HPC System." Asian Conference on Supercomputing Frontiers.
Springer, 2018

§ Motivation & Negative effects § Evaluating by Average Precision(AP)

§ Evaluating by Simulation with
Saved-Lost Rate (SLR)

𝑆𝑎𝑣𝑒𝑑
𝑆𝐿𝑅𝐶= 𝐿𝑜𝑠𝑡+ 𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡=

𝑇𝑃
𝑗.𝑢𝑠𝑒𝑑_𝑤𝑎𝑙𝑙𝑡𝑖𝑚𝑒− 𝐶𝑡𝑝

𝑡𝑝=1

𝑝= 1 𝑓𝑝= 1

𝑃 𝐹𝑃

𝑗.𝑢𝑠𝑒𝑑_𝑤𝑎𝑙𝑙𝑡𝑖𝑚𝑒𝑝+ 𝐶𝑓𝑝

• Apply machine learning to train models for predicting whether  
the user has underestimated the job run-time

• Using data produced by TSUBAME 2.5
•

•

•
•

Runtime-underestimated jobs can be predicted with  
different accuracy and SLR at different checkpoint times  
Summing up the “Saved” time of all the applications at  
best SLRs checkpoints, 24962 hours can be saved in  
total with existing TSUBAME 2.5 data
Helping HPC users to reduce time and financial loss  
Helping HPC system administrators free up computing  
resources


