



#### **Computer Architecture Simulation Using Machine Learning**

Adolfy Hoisie Chair, Computing for National Security Department

Work with: Lingda Li, Thomas Flynn, Ray Ren, and many others



#### Challenges for System and Application Design

- Multiple constraints
  - Optimal performance
  - Power constraints
  - Fault tolerance
- Adaptivity: vast numbers of "knobs" to deal with
  - Applications-data driven
  - Systems-heterogeneous
- Complexity of the system software stack–dynamic behavior
  - Models in runtime
  - Actionable models
  - Guiding runtime optimizations and operation

- Complex architectures and associated technologies
  - Need to leverage marketplace
  - Extreme-scale systems are increasingly emerging as a synthesis of technologies
  - Leverage commoditization but adds specific smarts
- Modeling is called to capture multiple boundaries of the hardware-software (HW-SW) stack.
- Applications must cope with and help mitigate the increased complexity.
- Triggers the need for modeling now; wide-spread exploration of future applications and technologies



# SMaSH: Smart Modeling and Simulation for HPC



## **Performance Prediction Methods: Speed versus Accuracy**

SMaSH is an intricate challenge because of the complexity of the design space.

Methodologies exist that lack either practicality or accuracy.

|                                  | Speed               | Accuracy | Flexibility         |  |
|----------------------------------|---------------------|----------|---------------------|--|
| Analytical Modeling              | Fast                | Low      | Low                 |  |
| Emulation                        | Fast                | High (?) | Very low            |  |
| <b>Discrete Event Simulation</b> | Slow                | High     | High                |  |
| ML-based Simulation              | Medium; aiming high | High     | Medium; aiming high |  |

Discrete event simulation (DES) is slow:

- For example, gem5 simulates a modern microprocessor at several hundreds of KIPS.
- Not practical for realistic architectures and workloads.

#### GOAL: Accelerate accurate Architecture Simulation by two orders of magnitude.



#### Machine Learning as the Holy Grail?

- Recent progress in ML affords potential opportunities to address these problems
- Many questions need to be addressed:
  - Are the new methodologies applicable?
  - Are new uses possible?
  - Can ML's predictivity limits be conquered?
  - What is the accuracy vs. computational cost?





#### Accelerate DES? Why Not Simulate the Entire Processor Instead?

On-the-fly

(context)

instructions



National Laboratory

- Traditional approach simulates all processor behavior.
- ML-based approach incorporates timingrelated details into a mathematical model and ignores timing-irrelevant details.
- Use context instructions as part of input to capture dependencies/ hazards.

### **Simulating Application Performance**

- Instructions are fed into the ML model in execution order.
- For each instruction, the fetch, execution, and store latencies are predicted.
- On-the-fly instructions are updated based on the results then move on to predict for the next instruction.
- Application performance is determined after all instructions have been simulated.





#### **Neural Network Architectures**

- Explored a spectrum of state-of-the-art ML models for computer architecture simulation.
  - Fully connected layers
  - Convolution layers: capture the timing relationship between instructions
  - Improved the transformer encoder model [NIPS'17], a vision transformer (ViT)-like model [arXiv'20]
  - Implemented a long short-term memory (LSTM)-based model [ICML'19]
- Designed specific layers for simulation
  - Use a neural network to study the relationship between the current instruction and one context instruction and do so for all context instructions.





#### Machine Learning Works for Architecture Simulation!

#### Accuracy: Quantitatively

| Neural network architecture | Computation demand (million multiplications) | Instruction latency prediction accuracy (# cycles) |                   |               | Average absolute application simulation |
|-----------------------------|----------------------------------------------|----------------------------------------------------|-------------------|---------------|-----------------------------------------|
|                             |                                              | Fetch latency                                      | Execution latency | Store latency | error                                   |
| 7RB+2F, best CNN model      | 93                                           | 0.15                                               | 0.96              | 0.52          | 0.96%                                   |
| Transformer encoder         | 88                                           | 0.49                                               | 2.06              | 0.88          | 2.4%                                    |
| ViT, small                  | 118                                          | 0.34                                               | 6.99              | 1.69          | 20%                                     |
| ViT, large                  | 351                                          | 0.26                                               | 4.19              | 1.35          | 14%                                     |
| LSTM                        | 119                                          | 0.57                                               | 3.27              | 1.29          | 2.4%                                    |

Observation: CNN models achieve the best accuracy with less computation demand. ...and Qualitatively

Paper under publication at:



https://arxiv.org/abs/2105.05821





#### SMaSH to Date: Significant, Meaningful Progress

- ML-based ModSim methodology developed.
- "SIMNET" Simulator infrastructure and research prototype implemented.

- SIMNET optimized algorithmically and through software engineering.
- Validation using realistic benchmarks and architectures.



#### Dynamic Codesign of HW-SW for Fast Analysis of High-throughput Scientific Experiments



#### Next-generation Detectors: Highthroughput, High-velocity

- Increasing spatial and temporal resolutions leads to high volumes and velocities of data.
  - Example: Recent scanning electron microscopes can produce 50 GB/s of data.
- Need to process images quickly, extract insights and rapidly incorporate insights into new settings or experiments.
- Diverse operating modes (streams, bursts of data) and heterogenous detectors.





### **Beyond Static Codesign Approaches**

- Promising work on optimizing ML workloads
  - Device placement: how to place elements of a computation graph onto available accelerator cores
  - Resizing neural nets: How to trade off accuracy for model size.
- However, dynamic approaches are needed:
  - Different parts of an experiment call for disparate imaging settings (impacting data resolution/rate)
  - Algorithm settings change (e.g., required accuracy)
  - Shifting demands may require different HW-SW mappings for optimal performance



Top: Device Placement Optimization with Reinforcement Learning. Mirhoseini et al. (2017) Bottom: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan and Le (2019)



## Wanted: Model-driven for Dynamic Modeling/Codesign

Ability to find new placements or mappings on the fly is needed.

From this vantage point, codesign is not merely static mapping of HW onto SW, but a dynamic data-driven process.

• Vital for now-dominant, data-driven workloads and heterogenous architectures

- In this regime, experimental HW, application SW, and other devices (e.g., storage) are all coupled through feedback loops.
  - Rational, quantitative ways to reconfigure components while experiments are conducted

Feedback loops for performance and scientific criteria.

This model-based codesign approach can benefit from ML tools and frameworks:

- Gather training data from actual experimental and SW configurations
- Observe performance data
- Use ML models to predict optimal actions and knob settings for a dynamic codesign engine
- Train the intelligent runtime using reinforcement learning





### **Summary and Conclusions**

ModSim is at a crossroads due to system heterogeneity and data-driven workloads.

• Solution \*may\* be in sight when dealing with complexity seems unbearable.

Workload characterization is on a new path.

ML is the dominant application on clouds and extreme-scale systems.

- ML is a promising modeling tool!
- For performance modeling, simulator development remains a significant challenge.
  - SMaSH is a new frontier in ML for system ModSim.

Dynamic modeling is key.

- Static approaches cannot account for dominant runtime effects in a data environment.
- Dynamic models, including those based on ML, show significant promise for complex data workflow management and optimization.

Center for Advanced Technology for Artificial Intelligence (CAT-AI) at Brookhaven Lab: nexus for these and other related technologies.

