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Challenges for System and Application 
Design
• Multiple constraints

• Optimal performance
• Power constraints
• Fault tolerance

• Adaptivity: vast numbers of “knobs” to 
deal with

• Applications–data driven
• Systems–heterogeneous

• Complexity of the system software 
stack–dynamic behavior

• Models in runtime
• Actionable models
• Guiding runtime optimizations and 

operation

• Complex architectures and associated 
technologies

• Need to leverage marketplace
• Extreme-scale systems are increasingly  

emerging as a synthesis of technologies 
• Leverage commoditization but adds 

specific smarts
• Modeling is called to capture multiple 

boundaries of the hardware-software 
(HW-SW) stack.

• Applications must cope with and help 
mitigate the increased complexity. 

• Triggers the need for modeling now; 
wide-spread exploration of future 
applications and technologies
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SMaSH: Smart Modeling and 
Simulation for HPC
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Performance Prediction Methods: Speed 
versus Accuracy
SMaSH is an intricate challenge because of the complexity of the design space.
Methodologies exist that lack either practicality or accuracy.

Discrete event simulation (DES) is slow:
• For example, gem5 simulates a modern microprocessor at several hundreds of KIPS.
• Not practical for realistic architectures and workloads.

GOAL: Accelerate accurate Architecture Simulation by two orders of magnitude.

Speed Accuracy Flexibility
Analytical Modeling Fast Low Low

Emulation Fast High (?) Very low

Discrete Event Simulation Slow High High

ML-based Simulation Medium; aiming high High Medium; aiming high
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Machine Learning as the Holy Grail?

• Recent progress in ML affords 
potential opportunities to 
address these problems

• Many questions need to be 
addressed:

• Are the new methodologies 
applicable?

• Are new uses possible?
• Can ML’s predictivity limits be 

conquered?
• What is the accuracy vs. 

computational cost?
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Accelerate DES? Why Not Simulate the 
Entire Processor Instead?

• Traditional approach 
simulates all processor 
behavior.

• ML-based approach 
incorporates timing-
related details into a 
mathematical model and 
ignores timing-irrelevant 
details.

• Use context instructions 
as part of input to 
capture dependencies/
hazards.
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Simulating Application Performance
• Instructions are fed into the ML model in execution order.
• For each instruction, the fetch, execution, and store 

latencies are predicted.
• On-the-fly instructions are updated based on the results 

then move on to predict for the next instruction.
• Application performance is determined after all instructions 

have been simulated.
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Neural Network Architectures
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A residual block inspired by EfficientNet

• Explored a spectrum of state-of-the-art 
ML models for computer architecture 
simulation.

• Fully connected layers
• Convolution layers: capture the timing 

relationship between instructions
• Improved the transformer encoder model 

[NIPS’17], a vision transformer (ViT)-like 
model [arXiv’20]

• Implemented a long short-term memory 
(LSTM)-based model [ICML’19]

• Designed specific layers for simulation
• Use a neural network to study the 

relationship between the current 
instruction and one context instruction 
and do so for all context instructions.
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Machine Learning Works for 
Architecture Simulation!
Accuracy: Quantitatively

Observation: CNN models achieve the best 
accuracy with less computation demand.

…and Qualitatively
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Neural network architecture Computation demand
(million multiplications)

Instruction latency prediction accuracy (# cycles) Average absolute 
application simulation 

errorFetch latency Execution latency Store latency
7RB+2F, best CNN model 93 0.15 0.96 0.52 0.96%

Transformer encoder 88 0.49 2.06 0.88 2.4%
ViT, small 118 0.34 6.99 1.69 20%
ViT, large 351 0.26 4.19 1.35 14%

LSTM 119 0.57 3.27 1.29 2.4%

Paper under publication at:

https://arxiv.org/abs/2105.05821

https://arxiv.org/abs/2105.05821
https://arxiv.org/abs/2105.05821


SMaSH to Date: Significant, Meaningful 
Progress
• ML-based ModSim methodology 

developed.
• “SIMNET” Simulator infrastructure and 

research prototype implemented.

• SIMNET optimized algorithmically and 
through software engineering.

• Validation using realistic benchmarks and 
architectures.

Extremely promising results…quantitatively and qualitatively

https://arxiv.org/abs/2105.05821

Model

Benchmark Simulation Error

Range Abs. Average

2F [-0.97%, 28%] 18%

3C+2F [-6.6%, 5.2%] 1.9%

5C+2F [-4.6%, 5.5%] 2.0%

7C+2F [-8.7%, 6.3%] 2.5%

7C+2F [-6.3%, 10.6%] 2.3%

7RB+2F [-2.7%, 0.78%] 0.96%
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Dynamic Codesign of HW-SW for 
Fast Analysis of High-throughput 
Scientific Experiments
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Next-generation Detectors: High-
throughput, High-velocity
• Increasing spatial and temporal resolutions 

leads to high volumes and velocities of data.
• Example: Recent scanning electron microscopes 

can produce 50 GB/s of data.
• Need to process images quickly, extract 

insights and rapidly incorporate insights into 
new settings or experiments.

• Diverse operating modes (streams, bursts of 
data) and heterogenous detectors.
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Beyond Static Codesign Approaches
• Promising work on optimizing ML 

workloads 
• Device placement: how to place 

elements of a computation graph 
onto available accelerator cores

• Resizing neural nets: How to trade 
off accuracy for model size.

• However, dynamic approaches are 
needed:

• Different parts of an experiment 
call for disparate imaging settings 
(impacting data resolution/rate)

• Algorithm settings change (e.g., 
required accuracy)

• Shifting demands may require 
different HW-SW mappings for 
optimal performance Top: Device Placement Optimization with Reinforcement Learning. Mirhoseini et al. (2017)

Bottom: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan and Le (2019)
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Wanted: Model-driven for Dynamic 
Modeling/Codesign
Ability to find new placements or mappings on the fly is needed.
From this vantage point, codesign is not merely static mapping of HW 

onto SW, but a dynamic data-driven process.
• Vital for now-dominant, data-driven workloads and heterogenous architectures

In this regime, experimental HW, application SW, and other devices 
(e.g., storage) are all coupled through feedback loops.

• Rational, quantitative ways to reconfigure components 
while experiments are conducted

Feedback loops for performance and scientific criteria.
This model-based codesign approach can benefit from 

ML tools and frameworks:
• Gather training data from actual experimental and SW configurations
• Observe performance data
• Use ML models to predict optimal actions and knob settings for a 

dynamic codesign engine
• Train the intelligent runtime using reinforcement learning
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Summary and Conclusions
ModSim is at a crossroads due to system heterogeneity and data-driven workloads.

• Solution *may* be in sight when dealing with complexity seems unbearable.
Workload characterization is on a new path.
ML is the dominant application on clouds and extreme-scale systems.

• ML is a promising modeling tool!
For performance modeling, simulator development remains a significant challenge.

• SMaSH is a new frontier in ML for system ModSim.
Dynamic modeling is key.

• Static approaches cannot account for dominant runtime effects in a data environment.
• Dynamic models, including those based on ML, show significant promise for complex data 

workflow management and optimization.
Center for Advanced Technology for Artificial Intelligence (CAT-AI) at Brookhaven Lab: 

nexus for these and other related technologies.
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