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Challenges for System and Application
Design

« Multiple constraints « Complex architectures and associated
 Optimal performance technologies
« Power constraints * Need to leverage marketplace
« Fault tolerance « Extreme-scale systems are increasingly
. » . emerging as a synthesis of technologies
* Adaptivity: vast numbers of "knobs” to « Leverage commoditization but adds
deaL\Wlili_h " data dii specific smarts
- Abplications—data driven » Modeling is called to capture multiple
* Systems-heterogeneous boundaries of the hardware-sofware
« Complexity of the system software (HW-SW) stack.
stack—dynamic behavior « Applications must cope with and help
* Models in runtime mitigate the increased complexity.

* Actionable models

 Guiding runtime optimizations and
operation

» Triggers the need for modeling now;
wide-spread exploration of future
applications and technologies
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SMaSH: Smart Modeling and
Simulation for HPC




Performance Prediction Methods: Speed
versus Accuracy

SMaSH is an intricate challenge because of the complexity of the design space.
Methodologies exist that lack either practicality or accuracy.

Speed Accuracy Flexibility
Analytical Modeling Fast Low Low
Emulation Fast High (?) Very low
Discrete Event Simulation Slow High High
ML-based Simulation Medium; aiming high High Medium; aiming high

Discrete event simulation (DES) is slow:

» For example, gem5 simulates a modern microprocessor at several hundreds of KIPS.
» Not practical for realistic architectures and workloads.

GOAL: Accelerate accurate Architecture Simulation by two orders of magnitude.
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Machine Learning as the Holy Grail?

« Recent progress in ML affords _—
potential opportunities to Hardware

address these problems

* Many questions need to be
addressed:
« Are the new methodologies
applicable?
» Are new uses possible?
« Can ML’s dpredic:tivity limits be
conquered?

« What is the accuracy vs.
computational cost?
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Accelerate DES? Why Not Simulate the
Entire Processor Instead?

Traditional Simulation ML-based Simulation -
Instruction Instruction ° T_rad|t|0na| approach
gt simulates all processor

o behayvior.

* ML-based approach
Incorporates timing-
ML related details into a

Processor | O”'”;e'ft'y mathematical model and
Timng | ¥ (context) — anores timing-irrelevant

Model instructions etails.

» Use context instructions
as part of input to

I R capture dependencies/
2O hazards.

Latency Latency
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Simulating Application Performance

Instructions are fed into the ML model in execution order.

For each instruction, the fetch, execution, and store Instruction
latencies are predicted. Sy

On-the-ﬂy InStrUCt|OnS are updated based on the resu|ts ............................................
then move on to predict for the next instruction.

« Application performance is determined after all instructions : ML
have been simulated. E  Bidcbeor On-the-fly
Total execution time Timing (context)
. A \ Model instructions
Inst, LE. ] E, |
Inst, LE | E, | S, |
Inst; B, | E, | Instg’s : :
Inst, | E, s, | context Eeretessesiensensssn s astassessensaess :
Inst; [_Fs | E. | gt
LF | E |
e Latency

Fetch latency [CET] Execution latency [S_]Store latency
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Neural Network Architectures

« Explored a spectrum of state-of-the-art
ML models for computer architecture

simulation.
« Fully connected layers Insty 2
« Convolution layers: capture the timing — 1D Conv | 1z =
i ' ' ' nst, o) S
relationship between instructions 1D Comv+| £ ] B[] o5
* Improved the transformer encoder model T - g -
[NIPS'17], a vision transformer (ViT)-like 2 P
model [arXiv’'20] 1D Conv £
Inst; )

* Implemented a long short-term memory
(LSTM)-based model [ICML19]

» Designed specific layers for simulation

: £ = | € 3 = >| | €
* Use a neural network to study the A REIRE R E IR EE RN RE
relationship between the current E s EPlE s EPE EPE 2
instruction and one context instruction = |3 |9 |&B] | 5| |2 |53 |#] | €] |3
. . K- Al |4 e

and do so for all context instructions.
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Machine Learning Works for
Architecture Simulation!

Accuracy: Quantitatively

. : P Average absolute
Neural network architecture (?n%?o%uﬁﬂﬁir;)ﬁfarﬂgzg) Instruction latency prec.jlctlon accuracy (# cycles) application simulation

Fetch latency Execution latency Store latency error

7RB+2F, best CNN model 93 0.15 0.96 0.52 0.96%
Transformer encoder 88 0.49 2.06 0.88 2.4%
ViT, small 118 0.34 6.99 1.69 20%

VIiT, large 351 0.26 4.19 1.35 14%

LSTM 119 0.57 3.27 1.29 2.4%

Observation: CNN models achieve the best . sorccusssu | o 2%spectand
accuracy with less computation demand. EZN ot |° “VWAW

..and Qualitatively RN

N »
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SMaSH to Date: Significant, Meaningful
Progress

* ML-based ModSim methodology « SIMNET optimized algorithmically and

developed. through software engineering.
« “SIMNET” Simulator infrastructure and  Validation using realistic benchmarks and
research prototype implemented. architectures.
Hoimattion [ festures W
A 1 v | management
1

[Execution latency)

1 . i
X Static »| Machine
I Input trace H Instruction I :| properties " Jlearning model

Context
Instruction 1
Memory access info 'Jcontext features| 1
Range Abs. Average £ _________________ 1
CPU Multi-threadin Multi-GPU S .
oF £0.97%, 28%] - g E 5 10l B 3C+2F Hybrid 7C+2F M 7TRB+2F
Read =
3C+2F -6.6%, 5.2% 1.9% Sub- |l . . \ _ )
[ ! Trace, instructions [N/ Build ML | [ | TensorRT -
5C+2F [-4.6%, 5.5%] 20% — ‘ Input ate Inference % 5t
% 6.39 9 Instruction Sub- |} . ca . + =
1C+2F L8.7%, 6.3%] 2:5% Trace Trace; instructions |: i g 0
H 1 v N
7C+2F -6.3%, 10.6% 2.3% 3052 6104 12208 24415 48829 97657
' [ ! Sub- [l Rea(! i Context Clock # instructions per sub-trace
7RB+2F [-2.7%, 0.78%)] 0.96% Trace, instructions i [ management management
[Jceu [JGru
<" Brookhaven isi itati ot
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Dynamic Codesign of HW-SW for
Fast Analysis of High-throughput
Scientific Experiments




Next-generation Detectors: High-
throughput, High-velocity

* Increasing spatial and temporal resolutions
leads to high volumes and velocities of data.

« Example: Recent scanning electron microscopes
can produce 50 GB/s of data.

* Need to process images quickly, extract
iInsights and rapidly incorporate insights into
new settings or experiments.

 Diverse operating modes (streams, bursts of
data) and heterogenous detectors.
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Beyond Static Codesign Approaches

* Promising work on optimizing ML o\ I~ I~ [ ]
workloads mﬁ\ﬁ\“@mn mm,@mm,
 Device placement: how to place ' e w } r'@'ﬁ@lr
elements of a computation graph R A i W - W

II
onto available accelerator cores

» Resizing neural nets: How to trade i

off accuracy for model size. |
* However, dynamic approaches are — .
n e e d e d : #channels ‘ ) :l{ _— S E—

- Different parts of an experiment —_ ] = = ==
call for disparate imaging settings ‘ — = - B3 o _L_
(impacting data resolution/rate) = —— iL o .-

« Algorithm settings change (e.qg., - = s [ 5
required accuracy) - 5 e B

¢ S.hifting demands may reqUire (a)szseline (tJ)Widt"1 scaling (c)deptiscaling (d) resolution scaling (e)compoLndscaling
different HW-SW mappings for
Optlmal performance Top: Device Placement Optimization with Reinforcement Learning. Mirhoseini et al. (2017)

Bottom: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan and Le (2019)
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Wanted: Model-driven for Dynamic
Modeling/Codesign

Ability to find new placements or mappings on the fly is needed.

From this vantage point, codesign is not merely static mapping of HW
onto SW, but a dynamic data-driven process. o ——

« Vital for now-dominant, data-driven workloads and heterogenous architectures hardware

In this rec};ime, experimental HW, application SW, and other devices
(e.g., sforage) are all coupled through feedback loops.

» Rational, quantitative ways to reconfigure components
while experiments are conducted Application

. . . . |
Feedback loops for performance and scientific criteria. Ve Dynamic

This model-based codesign approach can benefit from codesign
ML tools and frameworks: engine

» Gather training data from actual experimental and SW configurations
» Observe performance data

« Use ML models to predict optimal actions and knob settings for a
dynamic codesign engine

 Train the intelligent runtime using reinforcement learning

Compute

accelerators
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Summary and Conclusions

ModSim is at a crossroads due to system heterogeneity and data-driven workloads.
« Solution *may”* be in sight when dealing with complexity seems unbearable.

Workload characterization is on a new path.

ML is the dominant application on clouds and extreme-scale systems.
* ML is a promising modeling tool!

For performance modeling, simulator development remains a significant challenge.
« SMaSH is a new frontier in ML for system ModSim.

Dynamic modeling is key.
« Static approaches cannot account for dominant runtime effects in a data environment.

« Dynamic models, including those based on ML, show significant promise for complex data
workflow management and optimization.

Center for Advanced Technology for Artificial Intelligence (CAT-Al) at Brookhaven Lab:
nexus for these and other related technologies.
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