
Computer Architecture Simulation
Using Machine Learning

Work with: Lingda Li, Thomas Flynn, Ray Ren, and many others

Adolfy Hoisie
Chair, Computing for National Security Department

Challenges for System and Application
Design
• Multiple constraints

• Optimal performance
• Power constraints
• Fault tolerance

• Adaptivity: vast numbers of “knobs” to
deal with

• Applications–data driven
• Systems–heterogeneous

• Complexity of the system software
stack–dynamic behavior

• Models in runtime
• Actionable models
• Guiding runtime optimizations and

operation

• Complex architectures and associated
technologies

• Need to leverage marketplace
• Extreme-scale systems are increasingly

emerging as a synthesis of technologies
• Leverage commoditization but adds

specific smarts
• Modeling is called to capture multiple

boundaries of the hardware-software
(HW-SW) stack.

• Applications must cope with and help
mitigate the increased complexity.

• Triggers the need for modeling now;
wide-spread exploration of future
applications and technologies

2

SMaSH: Smart Modeling and
Simulation for HPC

3

Performance Prediction Methods: Speed
versus Accuracy
SMaSH is an intricate challenge because of the complexity of the design space.
Methodologies exist that lack either practicality or accuracy.

Discrete event simulation (DES) is slow:
• For example, gem5 simulates a modern microprocessor at several hundreds of KIPS.
• Not practical for realistic architectures and workloads.

GOAL: Accelerate accurate Architecture Simulation by two orders of magnitude.

Speed Accuracy Flexibility
Analytical Modeling Fast Low Low

Emulation Fast High (?) Very low

Discrete Event Simulation Slow High High

ML-based Simulation Medium; aiming high High Medium; aiming high

4

Machine Learning as the Holy Grail?

• Recent progress in ML affords
potential opportunities to
address these problems

• Many questions need to be
addressed:

• Are the new methodologies
applicable?

• Are new uses possible?
• Can ML’s predictivity limits be

conquered?
• What is the accuracy vs.

computational cost?

Machine
Learning

Commodity
Hardware

Benchmarks

Applications Physical
Properties

Simulations

Model

Architecture
Parameters

Performance,
Prediction and

Insight

5

Accelerate DES? Why Not Simulate the
Entire Processor Instead?

• Traditional approach
simulates all processor
behavior.

• ML-based approach
incorporates timing-
related details into a
mathematical model and
ignores timing-irrelevant
details.

• Use context instructions
as part of input to
capture dependencies/
hazards.

Traditional Simulation
Instruction

Latency

ML-based Simulation
Instruction

Latency

ML
Processor

Timing
Model

On-the-fly
(context)

instructions

6

Simulating Application Performance
• Instructions are fed into the ML model in execution order.
• For each instruction, the fetch, execution, and store

latencies are predicted.
• On-the-fly instructions are updated based on the results

then move on to predict for the next instruction.
• Application performance is determined after all instructions

have been simulated.

Instruction

Latency

ML
Processor

Timing
Model

On-the-fly
(context)

instructions

7

Neural Network Architectures

Inst0

Inst1

Inst2

Inst3

1D Conv

Fl
at

te
n

Fu
lly

 c
on

ne
ct

ed
 la

ye
r

F 0
E

0
S 0

1D Conv

1D Conv

B
at

ch
 n

or
m

Si
gm

oi
d

E
xp

an
d

co
nv

B
at

ch
 n

or
m

Si
gm

oi
d

D
ep

th
 c

on
v

Sq
ue

ez
e

&

ex
ci

ta
tio

n

+

B
at

ch
 n

or
m

Po
in

t c
on

v

Si
gm

oi
d

A residual block inspired by EfficientNet

• Explored a spectrum of state-of-the-art
ML models for computer architecture
simulation.

• Fully connected layers
• Convolution layers: capture the timing

relationship between instructions
• Improved the transformer encoder model

[NIPS’17], a vision transformer (ViT)-like
model [arXiv’20]

• Implemented a long short-term memory
(LSTM)-based model [ICML’19]

• Designed specific layers for simulation
• Use a neural network to study the

relationship between the current
instruction and one context instruction
and do so for all context instructions.

8

Machine Learning Works for
Architecture Simulation!
Accuracy: Quantitatively

Observation: CNN models achieve the best
accuracy with less computation demand.

…and Qualitatively

9

Neural network architecture Computation demand
(million multiplications)

Instruction latency prediction accuracy (# cycles) Average absolute
application simulation

errorFetch latency Execution latency Store latency
7RB+2F, best CNN model 93 0.15 0.96 0.52 0.96%

Transformer encoder 88 0.49 2.06 0.88 2.4%
ViT, small 118 0.34 6.99 1.69 20%
ViT, large 351 0.26 4.19 1.35 14%

LSTM 119 0.57 3.27 1.29 2.4%

Paper under publication at:

https://arxiv.org/abs/2105.05821

https://arxiv.org/abs/2105.05821
https://arxiv.org/abs/2105.05821

SMaSH to Date: Significant, Meaningful
Progress
• ML-based ModSim methodology

developed.
• “SIMNET” Simulator infrastructure and

research prototype implemented.

• SIMNET optimized algorithmically and
through software engineering.

• Validation using realistic benchmarks and
architectures.

Extremely promising results…quantitatively and qualitatively

https://arxiv.org/abs/2105.05821

Model

Benchmark Simulation Error

Range Abs. Average

2F [-0.97%, 28%] 18%

3C+2F [-6.6%, 5.2%] 1.9%

5C+2F [-4.6%, 5.5%] 2.0%

7C+2F [-8.7%, 6.3%] 2.5%

7C+2F [-6.3%, 10.6%] 2.3%

7RB+2F [-2.7%, 0.78%] 0.96%

Sub-
Trace0

Instruction
Trace

Build ML
Input

TensorRT
Inference

Clock
management

CPU GPU

Batch

Read
instructions

Sub-
Trace1

Sub-
Trace2

Read
instructions

Read
instructions

Multi-GPUCPU Multi-threading

Context
management

10

https://arxiv.org/abs/2105.05821

Dynamic Codesign of HW-SW for
Fast Analysis of High-throughput
Scientific Experiments

11

Next-generation Detectors: High-
throughput, High-velocity
• Increasing spatial and temporal resolutions

leads to high volumes and velocities of data.
• Example: Recent scanning electron microscopes

can produce 50 GB/s of data.
• Need to process images quickly, extract

insights and rapidly incorporate insights into
new settings or experiments.

• Diverse operating modes (streams, bursts of
data) and heterogenous detectors.

12

Beyond Static Codesign Approaches
• Promising work on optimizing ML

workloads
• Device placement: how to place

elements of a computation graph
onto available accelerator cores

• Resizing neural nets: How to trade
off accuracy for model size.

• However, dynamic approaches are
needed:

• Different parts of an experiment
call for disparate imaging settings
(impacting data resolution/rate)

• Algorithm settings change (e.g.,
required accuracy)

• Shifting demands may require
different HW-SW mappings for
optimal performance Top: Device Placement Optimization with Reinforcement Learning. Mirhoseini et al. (2017)

Bottom: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan and Le (2019)

13

Dynamic
codesign

engine

Experimental
hardware

Networking
subsystem

Storage
devices

Compute
accelerators

Application
layer

Wanted: Model-driven for Dynamic
Modeling/Codesign
Ability to find new placements or mappings on the fly is needed.
From this vantage point, codesign is not merely static mapping of HW

onto SW, but a dynamic data-driven process.
• Vital for now-dominant, data-driven workloads and heterogenous architectures

In this regime, experimental HW, application SW, and other devices
(e.g., storage) are all coupled through feedback loops.

• Rational, quantitative ways to reconfigure components
while experiments are conducted

Feedback loops for performance and scientific criteria.
This model-based codesign approach can benefit from

ML tools and frameworks:
• Gather training data from actual experimental and SW configurations
• Observe performance data
• Use ML models to predict optimal actions and knob settings for a

dynamic codesign engine
• Train the intelligent runtime using reinforcement learning

14

Summary and Conclusions
ModSim is at a crossroads due to system heterogeneity and data-driven workloads.

• Solution *may* be in sight when dealing with complexity seems unbearable.
Workload characterization is on a new path.
ML is the dominant application on clouds and extreme-scale systems.

• ML is a promising modeling tool!
For performance modeling, simulator development remains a significant challenge.

• SMaSH is a new frontier in ML for system ModSim.
Dynamic modeling is key.

• Static approaches cannot account for dominant runtime effects in a data environment.
• Dynamic models, including those based on ML, show significant promise for complex data

workflow management and optimization.
Center for Advanced Technology for Artificial Intelligence (CAT-AI) at Brookhaven Lab:

nexus for these and other related technologies.

15

