
PRESENTED BY

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SST-Explorer
Enabling System-level Performance and Reliability
Analysis for Designs with Real-World IPs

Arun Rodrigues

1

Arun Rodrigues, Amro Awad, Clayton Hughes, Sapan Agarwal, Michael Skoufis,
Gwen Voskuilen, Shubham Nema, Rohin Razdan, Alan Gardner, Scott Hemmert, and
Simon D. Hammond

SST-Explorer2

◦SST: Parallel, Open, Multi-scale, Interoperable
◦ SST Core framework: PDES, utilities and interfaces for
simulation components

◦ SST Element libraries: Libraries of components that perform
the actual simulation

◦C++ Models: functional to cycle-accurate
◦ Wide range of models for network, processor, memory, etc…

◦SST-Explorer Goals
◦ Allow mixed-mode simulations that combine RTL-level
components and high-level components

◦ Explore Reliability with fault injection and tracking

ESSENT Output3
◦ESSENT produces output file (.h) includes…
◦Headerfile defining basic types (e.g. Uint<T>)
◦List of signals (in, out, internal)
◦Eval() function which does the actual simulation
◦User supplies testbench wrapper code to provide input
stimulus

module Adder(

 input clock,

 input reset,

 input [7:0] io_in0,

 input [7:0] io_in1,

 output [7:0] io_out

);

 assign io_out = io_in0 +

io_in1;

endmodule

#include <uint.h>

typedef struct Adder {

 UInt<8> io_in0;

 UInt<8> io_in1;

 UInt<8> io_out;

 void eval() {

 UInt<9> _T = io_in0 + io_in1;

 io_out = _T.tail<1>();

 }

} Adder;

SST/ESSENT: Workflow4

◦SST-Explorer framework allows a simple workflow
which can transform Chisel or Verilog code into an
SST component
◦SST-Explorer parser reorganizes the C simulator
created by ESSENT in to an SST component
◦ (optionally) adds fault injection & tracking capabilities

◦ESSENT output + Template + user supplied code
and port maps → SST Components and Events.
◦ Templates: ‘generic’ components, UART-based, or AXI
interfaces.

◦Use cases
◦Fast high-level models + slow detailed models =
improve simulation speed

◦High-level “placeholder” components + low-level
components early in design cycle

Fault Tracking
◦SST-Explorer allows fault injection and
tracking
◦ESSENT Uint<T> and Sint<T> structures
replaced
◦ New structure stores original data, “faulty”
data, and info on inciting upset

◦ Operators overloaded so fault information
is propagated

◦ Faults are tracked and fault corrections are
noted

◦For each fault
◦ Where it started
◦ What it affected

template <int N>
class Uint {
 Uint_<N> origData; // correct data
 Uint_<N> data; // faulted data

 list<upsetDesc> upsets; // fault track
};

Fault Corrections & Diagnosis6

◦Other Use Cases
◦ Detect fault corrections

◦ Data struct carries ‘correct’ value, can determine if math
operations restore faulted to correct

◦ Useful for determining where faults squashed
◦ Multi-fault diagnosis

◦ Origin of each fault is tracked
◦ Can determine which upset (of many) caused fault or

error

◦Summary: SST-Explorer
◦RTL models to be integrated with SST
◦Fault injection & tracking

Fault
Correction

Multi-Fault
Diagnosis

