The price performance of performance models

Felix Wolf, Technical University of Darmstadt

ModSim 2021

11/2/21 | Technical University of Darmstadt, Germany | Felix Wolf | 1

Photo: Alex Becker / TU Darmstadt

TECHNISCHE

UNIVERSITÄT DARMSTADT

Acknowledgement

TU Darmstadt

- Alexandru Calotoiu
- Alexander Geiß
- Alexander Graf
- Daniel Lorenz
- Benedikt Naumann
- Thorsten Reimann
- Marcus Ritter
- Sergei Shudler

ETH Zurich

- Alexandru Calotoiu
- Marcin Copik
- Tobias Grosser
- Torsten Hoefler
- Nicolas Wicki

LLNL

- David Beckingsale
- Christopher Earl
- Ian Karlin
- Martin Schulz

Bundesministerium für Bildung und Forschung

DFG FNSNF

Performance model

Formula that expresses a relevant performance metric as a function of one or more execution parameters

Empirical performance modeling

Challenges

Run-to-run variation / noise

Cost of the required experiments

How to deal with noisy data

- Introduce **prior** into learning process
 - Assumption about the probability distribution generating the data

Performance model normal form (PMNF)

$$f(x) = \sum_{k=1}^{n} c_k \cdot p^{i_k} \cdot \log_2^{j_k}(x)$$

Single parameter [Calotoiu et al., SC13]

$$f(x_1, \dots, x_m) = \sum_{k=1}^n c_k \prod_{l=1}^m x_l^{i_{kl}} \cdot \log_2^{j_{kl}}(x_l)$$

Multiple parameters [Calotoiu et al., Cluster'16]

Heuristics to reduce search space

11/2/21 | Technical University of Darmstadt, Germany | Felix Wolf | 10

Available at: <u>https://github.com/extra-p/extrap</u>

Extra-P 4.0

MPI implementations [Shudler et al., IEEE TPDS 2019]

Platform	Juqueen	Juropa	Piz Daint	
Allreduce [s]		Expectation: O (log p)		
Model	O (log <i>p</i>)	O (p ^{0.5})	$O(p^{0.67} \log p)$	
R ²	0.87	0.99	0.99	
Match	\checkmark	~	X!	
Comm_dup [B]		Expectation: O (1)		
Model	2.2e5	256	3770 + 18 <i>p</i>	
R ²	1	1	0.99	
Match	\checkmark	\checkmark	X	

Kripke - example w/ multiple parameters

Experiments can be expensive Need experiments, = #parameters

Multi-parameter modeling in Extra-P

How many data points do we really need?

TECHNISCHE

UNIVERSITÄT DARMSTADT

Learning cost-effective sampling strategies [Ritter et al., IPDPS'20]

TECHNISCHE UNIVERSITÄT

DARMSTADT

Heuristic parameter-value selection strategy

Synthetic data evaluation

TECHNISCHE UNIVERSITÄT DARMSTADT

3 parameters, 5% noise

TECHNISCHE UNIVERSITÄT DARMSTADT

4 parameters, 5% noise

TECHNISCHE UNIVERSITÄT DARMSTADT

4 parameters, 1% noise

Case studies

Application	n	#Parameters	Extra points	Cost savings [%]	Prediction error [%]
FASTEST		2	0	70	2
Kripke		3	3	99	39
Relearn		2	0	85	11

Noise-resilient performance modeling [Ritter et al., IPDPS'21]

- Performance measurements
 frequently affected by noise
- Regression struggles with increased amounts of noise – especially w/ more parameters

 Neural networks are resilient to noise – when noise is part of their training

Adapted from: https://developer.nvidia.com/blog/ai-can-now-fix-your-grainy-photos-by-only-looking-at-grainy-photos/

DNNs often better at guessing models in the presence of noise

Noise-resilient performance modeling Synthetic evaluation

1 Toophical University of Dermstodt, Cormony J. Ealiy Welf J. 26

Noise-resilient performance modeling Case studies – Noise

Optimized measurement point selection

[Naumann et al., in preparation]

Optimized measurement point selection

via Gaussian Process Regression (GPR) – Introduction

TECHNISCHE

UNIVERSITÄT

DARMSTADT

Optimized Measurement Point Selection

Gaussian Processes

Gaussian Process (GP): Series of normal distributions

Optimized measurement point selection

Gaussian Processes

Idea: Use covariance function

Results

Budget needed

Parameter selection

[Copik et al, PPoPP'21]

- The more paramters the more experiments
- Modeling parameters without performance impact is harmful

Selected papers

Торіс	Bibliography
Foundation (single model paramter)	Alexandru Calotoiu, Torsten Hoefler, Marius Poke, Felix Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes. SC13 .
MPI case study	Sergei Shudler, Yannick Berens, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube, Felix Wolf: Engineering Algorithms for Scalability through Continuous Validation of Performance Expectations. IEEE TPDS , 30(8):1768–1785, 2019.
Multiple model parameters	Alexandru Calotoiu, David Beckingsale, Christopher W. Earl, Torsten Hoefler, Ian Karlin, Martin Schulz, Felix Wolf: Fast Multi-Parameter Performance Modeling. IEEE Cluster 2016 .
Cost-effective sampling strategies	Marcus Ritter, Alexandru Calotoiu, Sebastian Rinke, Thorsten Reimann, Torsten Hoefler, Felix Wolf: Learning Cost-Effective Sampling Strategies for Empirical Performance Modeling. IPDPS 2020 .
Noise resilience	Marcus Ritter, Alexander Geiß, Johannes Wehrstein, Alexandru Calotoiu, Thorsten Reimann, Torsten Hoefler, Felix Wolf: Noise-Resilient Empirical Performance Modeling with Deep Neural Networks. IPDPS 2021 .
Taint-based performance modeling	Marcin Copik, Alexandru Calotoiu, Tobias Grosser, Nicolas Wicki, Felix Wolf, Torsten Hoefler: Extracting Clean Performance Models from Tainted Programs. PPoPP 2021 .

Thank you!

Q&A