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Scaling your code can harbor 
performance surprises*…
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*Goldsmith et al., 2007
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Performance model
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Formula that expresses a relevant performance metric as a 
function of one or more execution parameters

Identify 
kernels

• Incomplete 
coverage

Create 
models

• Laborious, 
difficult

Analytical (i.e., manual) creation 
challenging for entire programs

𝑡 = 𝑓 𝑝𝑡 = 3 & 10!"𝑝# + 𝑐
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Empirical performance modeling

Performance measurements 
with different execution 
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine 
learning

𝑡 = 𝑓 𝑥$, … , 𝑥%

Alternative metrics: 
FLOPs, data volume… 
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Challenges 

Applications

System

Run-to-run variation / noise

Cost of the required experiments
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How to deal with noisy data

• Introduce prior into learning process
• Assumption about the probability distribution generating the data

• Computation
• Memory access
• Communication
• I/O~

Time Effort
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Typical algorithmic complexities in HPC
C
om
pu
ta
tio
n

C
om
m
unication

Samplesort

Naïve N-body

FFT

LU

Samplesort

Naïve N-body

FFT

LU

… …

t(p) ~ p2

t(p) ~ p

t(p) ~ c

t(p) ~ c

t(p) ~ p2 log2
2 (p)

t(p) ~ p

t(p) ~ log2(p)

t(p) ~ c
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Performance model normal form (PMNF)

𝑓 𝑥 = .
&'$

%

𝑐& & 𝑝(! & 𝑙𝑜𝑔#
)! 𝑥

Single parameter 
[Calotoiu et al., SC13]

𝑓 𝑥$, … , 𝑥* = .
&'$

%

𝑐&2
+'$

*

𝑥+
(!" & 𝑙𝑜𝑔#

)!" 𝑥+

Multiple parameters [Calotoiu et al., Cluster’16]

Heuristics to 
reduce search 

space

Parameter 
selection

Search 
space 

configuration

Linear 
regression + 

cross-
validation

Quality 
assurance
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Extra-P 4.0

Available at: https://github.com/extra-p/extrap

https://github.com/extra-p/extrap
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MPI implementations
[Shudler et al., IEEE TPDS 2019]

Platform Juqueen Juropa Piz Daint
Allreduce [s] Expectation: O (log p)
Model O (log p) O (p0.5) O (p0.67 log p)
R2 0.87 0.99 0.99
Match ✔ ~ ✘!
Comm_dup [B] Expectation: O (1)
Model 2.2e5 256 3770 + 18p
R2 1 1 0.99
Match ✔ ✔ ✘
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Kripke - example w/ multiple parameters

SweepSolver

Main computation kernel

Expectation – Performance depends on 
problem size

Actual model:

MPI_Testany

Main communication
kernel: 3D wave-front
communication pattern

Expectation – Performance depends on 
cubic root of process count

Actual model:

Kernels must wait on 
each other

*Coefficients have been rounded for convenience

Smaller compounded effect discovered 

t ~ p3t ~ d ⋅ g

t = 5+ d ⋅ g+ 0.005 ⋅ p3 ⋅d ⋅ g t = 7+ p3 + 0.005 ⋅ p3 ⋅d ⋅ g
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Experiments can be expensive
Need   experiments,  = #parameters
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Low memory High jitter
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Multi-parameter modeling in Extra-P

Generation of candidate models 
and selection of best fit

Find best single-
parameter model

Combine them in the 
most plausible way 

(+, *, none) 

𝑇𝑖𝑚𝑒 = 𝑐$ & 𝑛 & 𝑙𝑜𝑔 𝑛 & 𝑝

𝐹𝐿𝑂𝑃𝑠 = 𝑐# & 𝑛 & 𝑙𝑜𝑔 𝑛

c1 + c2 ⋅ p

c1 + c2 ⋅ p
2

c1 + c2 ⋅ log(p)
c1 + c2 ⋅ p ⋅ log(p)

c1 + c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ log(p)+ c2 ⋅ p
c1 ⋅ log(p)+ c2 ⋅ p ⋅ log(p)
c1 ⋅ log(p)+ c2 ⋅ p

2

c1 ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p+ c2 ⋅ p ⋅ log(p)
c1 ⋅ p+ c2 ⋅ p

2

c1 ⋅ p+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2

c1 ⋅ p ⋅ log(p)+ c2 ⋅ p
2 ⋅ log(p)

c1 ⋅ p
2 + c2 ⋅ p

2 ⋅ log(p)
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How many data points do we really need?
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Learning cost-effective sampling strategies
[Ritter et al., IPDPS’20]

Function generator

Noise module

Reinforcement learning 
agent

Selected
parameter
values

Synthetic
measurement

Extra-P

Evaluation

Feedback

Prediction

Ground truth

Empirical model
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Heuristic parameter-value selection strategy

Measure min. 
amount points 

required for modeling

Create a model using 
Extra-P

Gather on additional 
measurement 

(assumed to be 
cheapest)

Create new model

Final model

If cost 
< 

budget

yes

no
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Synthetic data evaluation

5%
10%

15%
20%

-5%
-10%

-15%
-20%

Training Evaluation



11/2/21 |  Technical University of Darmstadt, Germany  |  Felix Wolf  |  19

Synthetic evaluation results
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1 parameter, 5% noise 2 parameters, 5% noise

Measurements used / Percentage of cost
5 / 100% 9 / 12% 11 / 13% 15 / 17% 25 / 100%

Repetitions
2    4    6
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Synthetic evaluation results
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Measurements used / Percentage of cost
13 / 1.7% 15 / 1.8% 25 / 2.2% 75 / 11% 125 / 100%

Repetitions
2    4    6

3 parameters, 5% noise
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Synthetic evaluation results
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4 parameters, 5% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2    4    6

25 / 0.17%
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Synthetic evaluation results
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4 parameters, 1% noise

Measurements used / Percentage of cost

17 / 0.1% 18 / 0.12% 125 / 1.2% 250 / 4.2% 625 / 100%

Repetitions
2    4    6

25 / 0.17%
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Case studies

Application #Parameters Extra 
points

Cost savings 
[%]

Prediction 
error [%]

FASTEST 2 0 70 2

Kripke 3 3 99 39

Relearn 2 0 85 11

0
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Noise-resilient performance modeling
[Ritter et al., IPDPS’21]

§ Performance measurements 
frequently affected by noise 

§ Regression struggles with 
increased amounts of noise –
especially w/ more parameters

§ Neural networks are resilient to 
noise – when noise is part of 
their training

Original Reconstructed

1 Parameter:

x
3 Parameter:

zy
100% application behavior

x
100% application behavior

noise

noise
Adapted from: https://developer.nvidia.com/blog/ai-can-now-
fix-your-grainy-photos-by-only-looking-at-grainy-photos/
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Noise-resilient adaptive modeling

DNNs often better at guessing models in the presence of noise

Performance 
measurements Estimate noise

Noise 
low?

Final 
model

Classic 
(sparse) 
modeler

Select best 

DNN 
modeler

Performance 
model

yes

no

Performance 
model

Transfer learning

Adapted. Original © 2021 IEEE
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Noise-resilient performance modeling
Synthetic evaluation

0%

5%

10%

15%

20%

25%

30%

20% 50% 100%
Noise level

Median relative error

Adaptive Regression

2 parameters

(at unseen point, two ticks in each dimension)

0

Adapted. Original © 2021 IEEE
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Noise-resilient performance modeling
Case studies – Results 

13,45% 16,23%

7,12%

22,28%

69,79%

7,12%
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70%

80%

Kripke (Vulcan) FASTEST (SuperMUC) RELeARN

Median relative error

Adaptive Regression

Noise < 5%:
only the regression 

modeler is used

0

Adapted. Original © 2021 IEEE
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Noise-resilient performance modeling
Case studies – Noise 

Adapted. Original © 2021 IEEE
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Optimized measurement point selection
[Naumann et al., in preparation]

Sparse Better?
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Optimized measurement point selection
via Gaussian Process Regression (GPR) – Introduction 

From: Leclercq, Florent. (2018). Bayesian optimization for 
likelihood-free cosmological inference. Physical Review D. 98. 
10.1103/PhysRevD.98.063511. Used with permission.
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Mean function

Optimized Measurement Point Selection
Gaussian Processes

Gaussian Process (GP): Series of normal distributions

𝐺𝑃 𝑡 = 𝑁( 𝑚 𝑡 , 𝑐 𝑡, 𝑡, )

Covariance function
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Optimized measurement point selection
Gaussian Processes

Idea: Use covariance function

High variance High 
uncertainty

Promising 
measurement

Candidates
Measurement costs 

have to be considered!

Cost-benefit calculation
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Results
Synthetic evaluation (3 parameters)
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Results
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Parameter selection
[Copik et al, PPoPP’21]

• The more paramters the more experiments

• Modeling parameters without performance impact is harmful 

Taint 
analysis

Program

Input parameters Which 
parameter 
influences 

which
function?

Taint labels
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Thank you!

Q&A


