Union: A Unified HW-SW Co-Design Ecosystem in MLIR for Evaluating Tensor Operations on Spatial Accelerators

Geonhwa Jeong¹, Gokcen Kestor², Prasanth Chatarasi³, Angshuman Parashar⁴, Po-An Tsai⁴, Sivasankaran Rajamanickam⁵, Roberto Gioiosa² and Tushar Krishna¹

¹Georgia Tech ²Pacific Northwest National Laboratory ³IBM Research ⁴NVIDIA ⁵Sandia National Laboratories

Email: geonhwa.jeong@gatech.edu

The Era of Domain-Specific Accelerators

- Moore's law and Dennard's scaling do not work anymore.
- Accelerators include large parallel compute units to meet the extreme compute demands.

Fragmentation Example

Union Overview

Union Abstractions

Problem: Operation: GEMM Shape: Name: Example Dimensions: [M, N, K] Data-space: - Name: Input Projection: - [[M], [K]] - Name: Weight Projection: - [[K], [N]]

Name: Output
Projection:
- [[M], [N]]
Read-write: true

Instance: M: 16 N: 64

K: 32

Name: **C4** Virtual: False Dimension: X

Local: Memory: DRAM Sub-tree: Name: **C3** Virtual: False Dimension: Y Local: Memory: L2 Buffer

Sub-tree: Name: C2[1...2] Virtual: True Dimension: X

> Sub-tree: Name: C1[1...4] Virtual: False Local: Memory: L1 Buffer Compute: MAC Unit

// C4: DRAM to L2 target_cluster: C4 temporal_order: MNK temporal_tile_sizes: 16, 32, 16 spatial_tile_sizes: 16, 32, 16

// C3: L2 to V2
target_cluster: C3
temporal_order: MNK
temporal_tile_sizes: 8, 16, 8
spatial_tile_sizes: 8, 8, 8

// C2: V2 to L1
target_cluster: C2
temporal_order: MNK
temporal_tile_sizes: 8, 8, 8
spatial_tile_sizes: 8, 8, 2

// C1: L1 to MAC
target_cluster: C1
temporal_order: MNK
temporal_tile_sizes: 1, 1, 1
spatial_tile_sizes: 1, 1, 1

Union Problem

Union Architecture

Union Mapping

Conclusion

- We propose Union, a unified framework for evaluating tensor operations on spatial accelerators with unified abstractions.
- Our MLIR based framework allows to map both HPC and ML tensor operations using multiple mappers to multiple cost models for spatial accelerators.
- We present a few case studies to demonstrate the flexibility of the framework by evaluating different operations, mappings, and hardware features with a single framework.

Question? Please send me an email: geonhwa.jeong@gatech.edu

Thank you for listening! This work is accepted to PACT'21. Code available at https://github.com/union-codesign/union