Trace Generation of Machine Learning Workloads with GTReplay for Intel Integrated-GPU Modeling

Jaewon Lee, (Georgia Tech)
Konstantin Levit-Gurevich, (Intel)
Sunpyo Hong, (Intel)
Hyesoon Kim (Georgia Tech)

Introduction

- Integrated GPUs are prevalent. (2021 GPU market share of Intel iGPU: 68.3\%)
- Cheap and small packaging size
- ML with edge devices
- However, evaluating the performance of iGPUs is still hard
- Have focused on discrete GPUs
- Goal
- iGPU simulation environment driven by the traces of actual machine learning workload

GTPin-Macsim Simulation Flow

1. Generate a trace with GTPin in gLITs format while running ML workloads on target iGPU
2. Analyze the gLITs with GTReplay - Interpret memory instructions
3. Generate MacSim trace With MacSim trace generator plug-in for GTReplay
4. Evaluate performance on MacSim for generated MacSim traces

gLITs: Long Instruction Trace for GEN

GTPin and GTReplay

- GTPin
- dynamic binary instrumentation framework for GEN (Intel graphics) Architecture
- Generates traces by using gentrace()
- GTReplay
- a GEN emulator allowing replaying special trace generated by GTPin
- User can develop flexible analysis tools on top of GTReplay
- Both are open to public

MacSim Simulator

- A cycle-level, heterogeneous architecture simulator for x86, ARM, NVIDIA PTX, and Intel GPU instructions
- Can be configured as either a trace driven or execution-drive cycle level simulator
- Support performance evaluation and architecture exploration with various statistical results

Simulation Results

- System Configuration

Core
Intel-GPU Configuration 24 Cores, $1 \mathrm{GHz}, 7 \mathrm{HW}$ threads per core, integrated GPU model
Private L1 Cache
Private L1 TLB
64 entries per core, fully associative, LRU

Shared L2 Cache
Shared L2 TLB
Memory
Memory Configuration
2MB total, 16 -way, LRU
1024 entries total, 32 -way associative, LRU
2048 row buffer, FRFCFS policy, 16 channels

- Rodinia Simulation Results

