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Memory Models for Performance Analysis 
and Optimization 

• “Memory wall”, the gap between CPU and 
memory performance, has been increasing 
ever since

• Three outstanding issues with modern 
memory systems: 
• “Scale-up” with deeper hierarchy 
• “Scale-out” with access latency and data 

demand
• Heterogeneity in memory technology

• Memory models are essential for evaluating 
design alternatives and identifying 
performance bottlenecks 
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Memory Access Time
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Average Memory Access Time (AMAT)
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Concurrent Average Memory Access Time (C-AMAT)

• AMAT model failed to consider concurrency
• C-AMAT (concurrent AMAT) extends AMAT to account for concurrency:

C-AMAT = H/CH + ρM · pAMP/CM
C-AMAT(l) = H(l)/CH(l) + ρm(l) · κ(l) · C-AMAT(l+1) 

• APC (Accesses Per memory active Cycle) is a reciprocal of C-AMAT: memory access 
rates (measurable in practice) as opposed to memory access time
• LPM (Layered Performance Matching) is a method of matching the data request rate 

and supply rate in a memory hierarchy for performance optimization

Ø X.-H. Sun and D. Wang, "Concurrent  Average Memory Access Time", IEEE Computers, vol. 47, no. 5, pp. 74-80, May 2014. 

Ø X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems", ACM SIGMETRICS Performance Evaluation 
Review, Volume 40 , Issue 2, 2012.

Ø Y. Liu and X. Sun. “LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching 
Perspective”, IEEE Transactions on Parallel and Distributed Systems, 30(11):2478–2493, Nov 2019.
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A Memory-Centric View

The original C-AMAT derivation was focused on individual memory 
accesses, and somehow difficult to envision the effect of concurrency 
at a specific cache/memory device and across the memory hierarchy

A memory-centric view focuses on specific cache/memory device as 
memory accesses land on the device and how they overlap and 
interact with one another

It provides a time synchronized view across the memory hierarchy and 
makes it easier to realize recursive definitions
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A Memory-
Centric View

• The time at each cache (in terms of CPU 
cycles) can be divided into four categories 
depending on how memory accesses 
overlap:
• E is the set of memory inactive cycles: e = | E |
• H is the set of pure hit cycles:  h = | H |
• M is the set of pure miss cycles: m = | M |
• X is the set of mixed hit/miss cycles: x = | X |

• Total cycles: n = e + h + m + x
• The last three are collectively called memory 

active cycles (Ω)
• ω = h + m + x
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C-AMAT = ω / α
where ω is the number of memory active cycles (h+m+x) and 
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• Let ci(h) be the hit concurrency, the number of 
overlapped hit-access cycles at CPU cycle i

• Let ci(m) be the miss concurrency, the number 
of overlapped miss-access cycles at CPU cycle i

• Let ci be the memory access concurrency (i.e., 
overlapped memory accesses) at CPU cycle i

• Average hit concurrency:

• Average pure miss concurrency:

• Average memory access concurrency:

Memory Access Concurrency
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Results – Easy Proofs
• C-AMAT = AMAT / C, where C is average memory access concurrency
• C-AMAT can be expressed by extending AMAT formulation:

where ρM is the pure miss ratio and ρAMP is the average pure miss penalty

• Memory Stall Time (MST) per memory access:
MST = m / α = μ × κ × C-AMAT

where 
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Memory Hierarchy

• Three observations between cache level l and cache level l+1
1. Memory accesses at next level are misses from the previous level

2. Only miss access cycles propagate to the next level

3. Pure hit cycles become memory inactive cycles at the next level
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Recursive Definitions of C-AMAT
• First recursive definition:

where

• Second recursive definition:

where           =
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Layered Performance Matching
CPU
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Recursive Definition of Matching Ratio

• Matching ratio is defined to be the ratio between the request rate 
and the supply rate:

• Let ∆ be the ratio of memory access time over compute time
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Performance Optimization as Recursive Process

• From

• If LPMR(1) is below the target, all good.
• If LPMR(1) is above target, and LPMR(2) is below target, then we 

should optimize L1 cache.
• If both LPMR(1) and LPMR(2) are above target, and LPMR(3) is below 

target, then we should optimize L1 and L2 caches.
• Otherwise, all three cache levels need to be optimized.

l        LPMR(l)
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Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an application’s
data access requirement for any matching parameter T1 > 0, then this
memory system has removed the memory wall effect for this application.

X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in Proc. of LCPC2016, Sept. 2016, New York, USA
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Generalized Model with 
Merging and Splitting

(Ongoing Work)

• A memory system can be 
viewed as a multitree
• Multitree is a DAG  in which “a set of 

nodes reachable from any node 
induces a tree”
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Applications of the Theoretical Model

• Two questions:
1. How to use the theoretical results in actual architecture design?
2. How does it benefit architecture and system research community?

• Examples:
• Multicore architecture (shared LLC)
• GPU memory performance
• Disaggregated memory systems (DMS)

• Design and implement simulators using the unified model to measure 
C-AMAT and LPM effects
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PIM: A Part of the Sluice Gate Consideration

n PIM conduct computing at the memory side and reduce data movement
n PIM is less powerful and when can help is an issue
n When to use PIM is part of the Sluice Gate theory
n Similar discussions for NDP (near data processing) and ISP (in storage processing)
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L Yan, M. Zhang, R. Wang, X. Chen, X. Zou, X. Lu, H Han, and X.-H. Sun, “CoPIM: A Concurrency-aware PIM Workload Offloading Architecture for Graph 
Applications,” in the proceedings of the 2021 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED202), July 26 – 28, 2021 (Virtual)



Hermes: A Multi-tiered I/O Buffering System
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n Selective cache, concurrent, matching
n Independent management of each tier

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,” 
Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020



Conclusion and 
Future Work

The unified framework establishes a coherent and 
enhanced math foundation for several existing 
performance models: C-AMAT, APC, LPM.

Limitations

• Cache write-backs
• Averages vs. transient behaviors
• Measurement and decision making in real time

Ongoing and future work

• Multicore, GPU, disaggregate memory
• Evaluating cache bypass
• Evaluating the impact of writebacks 
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