
A Unified Framework for
Performance Analysis and

Optimization of Memory Systems

Jason Liu, Florida International University
Xian-He Sun, Illinois Institute of Technology

ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications, Oct 5-8, 2021

Memory Models for Performance Analysis
and Optimization

• “Memory wall”, the gap between CPU and
memory performance, has been increasing
ever since

• Three outstanding issues with modern
memory systems:
• “Scale-up” with deeper hierarchy
• “Scale-out” with access latency and data

demand
• Heterogeneity in memory technology

• Memory models are essential for evaluating
design alternatives and identifying
performance bottlenecks

Processor

Registers

CPU Cache
L1 Cache

Physical Memory

Main Memory (DRAM)

Persistent Memory (NVRAM)

CPU

L2 Cache

L3 Cache

Storage Backend
Flash-Based SSD

HDD

Archival Storage (Tapes, …)

Multi-Issue

Multi-Threading

Multi-Core

Multi-Level Cache

Multi-Channel

Multi-Bank

Multi-Rank

Speculative Execution

Out-of-Order Execution

Multi-Banked Cache

Runahead Execution

Pipelined Cache

Non-Blocking Cache

Data Prefetching

Write Buffer

Pipeline

Non-Blocking

Prefetching

Write Buffer

2

Memory Access Time

1 2 +1 2

3 4

5 6

CPU/Core

L1 Cache

L2 Cache

L3 Cache

Memory (DRAM, PMEM, …)

7 8

H1 +3 4

(L1 hit)
a1:

(L1 miss, L2 hit)
a2:

(L1, L2 miss, L3 hit)
a3: H1 H2 +5 6

(L1, L2, L3 miss)
a4: H1 H2 +7 8H3

3

Average Memory Access Time (AMAT)

CPU/Core

L1 Cache

1 2

L2 Cache

3 4

L3 Cache

5 6

Memory (DRAM, PMEM, …)

7 8

AMAT1 = H1 + MR1 x AMP1

average among all memory
accesses that reach L1 cache

average hit time (+)1 2

L1 cache miss ratio
average miss penalty at L1 cache

AMP1 = AMAT2

AMAT2 = H2 + MR2 x AMP2

AMAT3 = H3 + MR3 x AMP3

average miss penalty at L2 cache
AMP2 = AMAT3

average miss penalty at L3 cache
AMP3 = avg mem time (+)7 8

4

Concurrent Average Memory Access Time (C-AMAT)

• AMAT model failed to consider concurrency
• C-AMAT (concurrent AMAT) extends AMAT to account for concurrency:

C-AMAT = H/CH + ρM · pAMP/CM
C-AMAT(l) = H(l)/CH(l) + ρm(l) · κ(l) · C-AMAT(l+1)

• APC (Accesses Per memory active Cycle) is a reciprocal of C-AMAT: memory access
rates (measurable in practice) as opposed to memory access time
• LPM (Layered Performance Matching) is a method of matching the data request rate

and supply rate in a memory hierarchy for performance optimization

Ø X.-H. Sun and D. Wang, "Concurrent Average Memory Access Time", IEEE Computers, vol. 47, no. 5, pp. 74-80, May 2014.

Ø X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems", ACM SIGMETRICS Performance Evaluation
Review, Volume 40 , Issue 2, 2012.

Ø Y. Liu and X. Sun. “LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching
Perspective”, IEEE Transactions on Parallel and Distributed Systems, 30(11):2478–2493, Nov 2019.

5

A Memory-Centric View

The original C-AMAT derivation was focused on individual memory
accesses, and somehow difficult to envision the effect of concurrency
at a specific cache/memory device and across the memory hierarchy

A memory-centric view focuses on specific cache/memory device as
memory accesses land on the device and how they overlap and
interact with one another

It provides a time synchronized view across the memory hierarchy and
makes it easier to realize recursive definitions

6

A Memory-
Centric View

• The time at each cache (in terms of CPU
cycles) can be divided into four categories
depending on how memory accesses
overlap:
• E is the set of memory inactive cycles: e = | E |
• H is the set of pure hit cycles: h = | H |
• M is the set of pure miss cycles: m = | M |
• X is the set of mixed hit/miss cycles: x = | X |

• Total cycles: n = e + h + m + x
• The last three are collectively called memory

active cycles (Ω)
• ω = h + m + x

7

mixed hit/miss cyclespure miss cyclespure hit cycles mixed hit/miss cycles

1 2 3 4 5 6 7 8 9 10 11 12 13

a1

a6
a7

a8
a9

a10

a4

a2
a3

a5

Time Measured in CPU Cycles at the Cache Device

time

Hit-access cycles

miss access cycles

C-AMAT = ω / α
where ω is the number of memory active cycles (h+m+x) and
α is the number of memory accesses

8

hit misshithit mixed mixed mixed mixed mixed mixed miss mixed mixed

a1
a2

a3
a4

a5
a6

a7
a8

a9
a10

c 1 2 2 3 3 4 5 4 3 3 2 2 3
c(h) 1 2 2 2 2 2 2 2 1 0 0 1 2
c(m) 0 0 0 1 1 2 3 2 2 3 2 1 1

Memory Cycles
1 2 3 4 5 6 7 8 9 10 11 12 13

hit-access cycle of a hit memory access

non-pure miss-access cycle of a miss memory access
hit-access cycle of a miss memory access

pure miss-access cycle of a miss memory access

• Let ci(h) be the hit concurrency, the number of
overlapped hit-access cycles at CPU cycle i

• Let ci(m) be the miss concurrency, the number
of overlapped miss-access cycles at CPU cycle i

• Let ci be the memory access concurrency (i.e.,
overlapped memory accesses) at CPU cycle i

• Average hit concurrency:

• Average pure miss concurrency:

• Average memory access concurrency:

Memory Access Concurrency

9

Results – Easy Proofs
• C-AMAT = AMAT / C, where C is average memory access concurrency
• C-AMAT can be expressed by extending AMAT formulation:

where ρM is the pure miss ratio and ρAMP is the average pure miss penalty

• Memory Stall Time (MST) per memory access:
MST = m / α = μ × κ × C-AMAT

where

10

M(2)

X(2)H(2)E(2)

X(1)

M(1)X(1)H(1)

1 2 3 4 5 6 7 8 9 10 11 12 13

a2
a4

a5
a7

a8
a9

C
ac

he
 L

ev
el

 1
C

ac
he

 L
ev

el
 2

a1
a2

a3
a4

a5
a6

a7
a8

a9
a10

Memory Cycles

11

Memory Hierarchy

• Three observations between cache level l and cache level l+1
1. Memory accesses at next level are misses from the previous level

2. Only miss access cycles propagate to the next level

3. Pure hit cycles become memory inactive cycles at the next level

12

Recursive Definitions of C-AMAT
• First recursive definition:

where

• Second recursive definition:

where =

13

Layered Performance Matching
CPU

α(1) = IC fmem

α(2) = α(1) ρm(1)

L1 Cache
ω(1) = IC fmem C-AMAT(1)

L2 Cache
ω(2) = μ(1) ω(1)

reduced m
em

ory accesses
reduced m

em
ory active cycles

λ(1) = IPCexe fmem
ν(1) = APC(1)

λ(2) = λ(1) ρm(1)
ν(2) = APC(2)

α(3) = α(2) ρm(2)

L3 Cache
ω(3) = μ(2) ω(2)

α(4) = α(3) ρm(3)

Main Memory
ω(4) = μ(1) ω(3)

λ(3) = λ(2) ρm(2)
ν(3) = APC(3)

λ(4) = λ(3) ρm(3)
ν(4) = APC(4)

14

Recursive Definition of Matching Ratio

• Matching ratio is defined to be the ratio between the request rate
and the supply rate:

• Let ∆ be the ratio of memory access time over compute time

15

Performance Optimization as Recursive Process

• From

• If LPMR(1) is below the target, all good.
• If LPMR(1) is above target, and LPMR(2) is below target, then we

should optimize L1 cache.
• If both LPMR(1) and LPMR(2) are above target, and LPMR(3) is below

target, then we should optimize L1 and L2 caches.
• Otherwise, all three cache levels need to be optimized.

l LPMR(l)

16

17

Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an application’s
data access requirement for any matching parameter T1 > 0, then this
memory system has removed the memory wall effect for this application.

X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in Proc. of LCPC2016, Sept. 2016, New York, USA

Data access
flow model

Processor
side

Water flow
model

Upstream
side

Off-chip
side

Downstream
side

Layer 1 Layer 2 Layer 4Layer 3

Generalized Model with
Merging and Splitting

(Ongoing Work)

• A memory system can be
viewed as a multitree
• Multitree is a DAG in which “a set of

nodes reachable from any node
induces a tree”

C1

L2

L3

L1

C2

L2

L1

C3

L2

L1

C4

L2

L1

P1

C5

L2

L3

L1

C6

L2

L1

C7

L2

L1

C8

L2

L1

P2

DRAM (near memory)NVM

NVM (far memory) Network
Adapter

DRAM
DRAM

DRAM

C9

L2

L3

L1

C10

L2

L1

DRAM

M1 M2

XPD1
XPD2

XPD3

Infiniband

k=1

k=12

k=2

k=13

k=3 k=4

k=14

k=21 k=22 k=23

k=30
k=29

k=28

k=26k=24 k=25

k=15 k=16 k=17

k=27

k=20k=19k=18

k=5 k=6 k=7 k=8 k=9 k=10

k=11

Disaggregated Memory

18

Applications of the Theoretical Model

• Two questions:
1. How to use the theoretical results in actual architecture design?
2. How does it benefit architecture and system research community?

• Examples:
• Multicore architecture (shared LLC)
• GPU memory performance
• Disaggregated memory systems (DMS)

• Design and implement simulators using the unified model to measure
C-AMAT and LPM effects

19

PIM: A Part of the Sluice Gate Consideration

n PIM conduct computing at the memory side and reduce data movement
n PIM is less powerful and when can help is an issue
n When to use PIM is part of the Sluice Gate theory
n Similar discussions for NDP (near data processing) and ISP (in storage processing)

20

L Yan, M. Zhang, R. Wang, X. Chen, X. Zou, X. Lu, H Han, and X.-H. Sun, “CoPIM: A Concurrency-aware PIM Workload Offloading Architecture for Graph
Applications,” in the proceedings of the 2021 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED202), July 26 – 28, 2021 (Virtual)

Hermes: A Multi-tiered I/O Buffering System

21

n Selective cache, concurrent, matching
n Independent management of each tier

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,”
Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020

Conclusion and
Future Work

The unified framework establishes a coherent and
enhanced math foundation for several existing
performance models: C-AMAT, APC, LPM.

Limitations

• Cache write-backs
• Averages vs. transient behaviors
• Measurement and decision making in real time

Ongoing and future work

• Multicore, GPU, disaggregate memory
• Evaluating cache bypass
• Evaluating the impact of writebacks

22

Thank you!

We thank our sponsor, National Science Foundation, for the support of
this work via grants CCF-2008000 and CCF-2008907.

Jason Liu, Pedro Espina, and Xian-He Sun. A Study on Modeling and Optimization of Memory
Systems. J. Comput. Sci. Technol. 36, 71–89 (2021). https://doi.org/10.1007/s11390-021-0771-8

23

https://doi.org/10.1007/s11390-021-0771-8

