
Program HighlightsSchool OverviewAccurately Modeling Sparse Accesses for 
Benchmarking and Architectural Simulation

Jeffrey Young, Vincent Huang, 
Patrick Lavin, Rich Vuduc
October 7th, 2021



Motivation – Benchmarking and Simulation

How do we synthesize a useful input to represent sparse accesses including gather/scatter (G/S)?
• We are interested in tracking G/S as a challenging memory access pattern for HPC applications. 



What are the requirements for a good pattern?

To recreate sparse accesses without requiring a full 
trace requires: 

Base address and offsets
• Delta values for subsequent accesses

Frequency 
• How frequently do sparse accesses occur?
• How many “regular” accesses occur in 

between sparse accesses of interest? How 
do they affect caching behavior?

Related work: 
• Patrick Lavin, et al., Evaluating Gather and Scatter Performance on CPUs and GPUs. In Proceedings of 

the International Symposium on Memory Systems (pp. 209-222). September 2020.
• Alif Ahmed, et al., Hopscotch: A micro-benchmark suite for memory performance evaluation. In 

Proceedings of the International Symposium on Memory Systems (pp. 167-172). September 2019



Building the workflow

• Using DynamoRio, we determine initial patterns and generate a trace
• Naïve (trace entire program) or using trace delimiting to provide user-driven scoping of functions

• Determine patterns with histogram and analysis functionality (Python scripts)
• Formulate patterns that work as Spatter inputs

Repo at: https://github.com/hpcgarage/dr-gather-scatter-trace



Validation of Patterns

1) Generate code with vectorized gather/scatter instructions (i.e., AVX-512 or SVE, -02 flags)
2) Disassemble and run application with gdb to observe the execution of G/S instructions
3) Run DynamoRio with our G/S tool and trace delimiting for a function to compare with code static analysis
• Counts may not be not exact due to offsets but should be within the same order of magnitude.

Repo at: https://github.com/hpcgarage/dr-gather-scatter-trace

GDB with Spatter “gather_smallbuf” function

DynamoRio with Spatter “gather_smallbuf” function



PENNANT Example

Repo at: https://github.com/hpcgarage/dr-gather-scatter-trace

Next steps:
• Generate more useful histogram output and test patterns against previous results
• Handle multiple threads
• Extend analysis to other sparse access types


