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ML-based Microarchitecture Simulation

Traditional Simulation ML-based Simulation

« Traditional discrete-event
simulators suffer from
~ long simulation time

* |dea: decompose _
discrete-event simulation

Instruction Instruction

Machine into instruction latenc
Learning On-the-fly rediction, and use
Processor (context) or the latter

Timing  :  instructions , :

Model Advantage: change

irregular discrete-event
simulation to reqular and
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Instruction Latency Prediction

Framework

Instruction latency depends on processor states, which in turn depend

K

on all instructions in the processor (i.e., context instructions)

ML models to learn the impact of Inst
context instructions

Input: to-be-predicted instruction and
context instructions Cxt Inst,

« Together they decide the current
processor states Cxt Inst

Cxt Inst1

1 111

ML
Model

Inst’s latency

Each instruction has the following features
« Static properties: operation type, register indices, etc.

 Dynamic properties: cache access level, memory address dependency, etc.
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ML Model Architecture

« Sequence-oriented models

* Long short-term memory (LSTM): integrate context instructions in order

« Transformer: attention mechanism to reason instruction relationships
« Convolutional neural network (CNN) mode

« Convolution operations to summarize
Instructions hierarchically

« Residual blocks to enable deep CNNs
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ML Model Evaluation

« CNN models achieve better prediction accuracy while requiring
less computation compared with LSTM and Transformer models

 7RB+2F achieves the most accurate prediction, and other CNN
models represent different trading points between computation

and accuracy CNN models Sequence-oriented models
A N

a N I
| 2F | 3C+2F | 5C+2F | 7C+2F | | LSTM
Computation 5.7 8.1 21.4 50.8 93.3 119 1185
(MFlops)
Latency error 57% 26% 16% 6.2% 5.1% 19% 17%
Simulation error 18% 1.9% 2.0% 2.3% 0.96% 2.4% 2.4%

: convolution layer
o Brookhaven C: convolution laye
National Laboratory F: fuIIy-connected Iayer

RB: residual block 5




Phase-level Simulation Accuracy

 Compare the
simulation CPI
across execution

K

phases

The CPI curves
across different
phases are similar
to that of gem5
which ML models
are trained against
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