ESP: an Open-Source Platform
for Collaborative Design
of Heterogeneous Systems

ModSim 2021 - Workshop on Modeling &
Simulation of Systems and Applications
@2 COLUMBIA UNIVERSITY October 6th’ 2021

The Age of Heterogeneous Computing

* State-of-the-art SoC architectures integrate /0 Core s

increasingly diverse sets of components

. . Comp.
o different CPUs, GPUs, hardware accelerators, MOk (CIERY Vision
. . . accelerator| |accelerator lerat
memory hierarchies, 1/O peripherals, sensors, accelerator
reconfigurable engines, analog blocks...
Radio Signal Proc. 1/0

accelerator| |accelerator

* The migration towards heterogeneous SoC
architectures will accelerate, across almost all computing domains

o 0T devices, mobile devices, embedded systems, automotive electronics,
avionics, data centers and even supercomputers

* The set of heterogeneous SoCs in production in any given year will
be itself heterogeneous!

o no single SoC architecture will dominate all the markets!

[]
P &2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

©Luca Carloni [N

Heterogeneity Increases Design Complexity

* Heterogeneous architectures produce higher energy-
efficient performance, but make more difficult the tasks of
design, verification and programming

* at design time, diminished regularity in the system structure, chip layout
* at runtime, more complex hardware/software and management of shared

resources
* With each SoC generation, the addition of new capabilities
Is increasingly limited by engineering effort and team sizes

* The biggest challenges are (and will increasingly be) found
in the complexity of system integration
Pa
Hi

&2 CoLUMBIA UNIVERSITY
H \ =4
©Luca Carloni A=d IN THE CITY OF NEW YORK 3

Open-Source Hardware (OSH)

* An opportunity to reenergize
the innovation in the
semiconductor and electronic

NVDLA.org

b RISC-V°

PULP. Platforn

dESign automation indUStrieS Open hardware, the way it should be!
* The OSH community is gaining OpenPiian
momentum CHIPS
o many diverse contributions from both ALLIANCE E“ OPENHW

academia and industry ds

o multi-institution organizations Image Sources:
https://chipsalliance.org/

o government programs https://qithub.com/nvdla
https://www.openhwqaroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/

https://riscv.org/ @2 COLUMBIA UNIVERSITY ,

IN THE CITY OF NEW YORK

PLN
Ak

©Luca Carloni

https://chipsalliance.org/
https://github.com/nvdla
https://www.openhwgroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/
https://riscv.org/

The Open Challenge of Open-Source Hardware

* To date, however, most OSH projects are focused on the
development of individual SoC components, such as a
processor core or an accelerator

* This leaves open a critical challenge:

How can we realize a complete SoC for a given target
application domain by efficiently reusing and combining
a variety of independently developed, heterogeneous,
OSH components, especially if these components are
designed by separate organizations for separate purposes?

PLN
Ak

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

©Luca Carloni

The Concept of Platform

* Innovation in SoC architectures and their design methodologies
Is needed to promote design reuse and collaboration
* Architectures and methodologies must be developed together

* Platform = architecture + methodology

* An SoC architecture enables design reuse when it simplifies the integration of
many components that are independently developed

* An SoC methodology enables design collaboration when it allows designers to
choose the preferred specification languages and design flows for the various
components

 An effective combination of architecture and methodology is a platform
that maximizes the potential of open-source hardware

* by scaling-up the number of components that can be integrated in an SoC and by
enhancing the productivity of the designers who develop and use them

[]
P &2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

©Luca Carloni [N

ESP : An Open-Source Platform for SoC Design

Release Resources News Press Team Contact

WwWw.esp.cs.columbia.edu

the open-source SoC platform

O v o OO

The ESP Vision

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a scalable
tile-based architecture and a flexible system-level design methodology.

(< BN
[C PyTorch]

HLS
Design Paper accepted at
Flows MICRO 2021

Vivado HLS g
Stratus HLS oI S
Catapult HLS L

Qur paper “Cohmeleon.
Learning-Based
Orchestration of Accelerator
Coherence in
Heterogeneous SoCs”will be
presented in October at
MICRO 2021

Read more

Published: Sep 14, 2021

ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. All three
design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and

software interfaces to rapidly enable full-system prototyping on FPGA

Overview

SoC Platform
] QQ COLUMBIA UNIVERSITY

©Luca Carloni IN THE CITY OF NEW YORK

ELI Tl e PO P [CPASPREUGRL Y Sy | T Rl B Sy

The ESP Architecture
I TE
V The ESP Methodology

Research & Teaching with ESP

25
i : .
S Bui
E iy

N
E|S|P

ESP Architecture

* RISC-V Processors

* Many-Accelerator
* Distributed Memory
* Multi-Plane NoC

4 The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

- /

=
o
=
|

multi-plane NoC

©Luca Carloni

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

ESP Architecture: ProcessorTile

NoC

routers

* Processor off-the-shelf Y processor g
® ® ® ® L1 cache

‘—rl—"

10
® ® ./.y L2 cache

flush

interrupt level

. proc |
o La private cache | L L b coherence 10/IRQ
planes plane

* L2 private cache 1 NoC
o Configurable size e e T)
o MESI protocol

* |O/IRQ channel
o Un-cached
o Accelerator config. registers,
interrupts, flush, UART, ...

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Architecture: Memory Tile

NoC
e
° ° ° ° L1 cache -
* LLC and directory partition <—¢—1——> h
o Configurable size L mm—— | [2cache loflush_
o Extended MESI protocol L proc, b coreence I0/RQ
o Supports coherent-DMA R IOIanesﬁoc Pene

for accelerators *" e e \ DR$AM

e DMA channels

mem. ctrl
§
* |O/IRQ channel -~ >
LLC &
directory < " 1 E
¥ | v
coherence DMA 10/IRQ
planes planes plane

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Architecture: AcceleratorTile

NoC
routers

processor T>,

® ® [] L1 cache Tq_’
S

<—¢—¢——> =

. °® ® o/or o £

o Direct-memory-access L2 cache ~—

proc |
o Run-time selection of ° ° ° ° coherence 10 /IRQ
planes plane
coherence model: acc mem NoC

® ® o ®
" FU”y COherent + \ * DR¢AM

» LLC coherent

accelerator PLM mem. ctrl
= Non coherent read/write port confingorf dcine - 3 { >
.) B f LLC&] m
o User-defined registers cache = TIg == et | 0d RRQ directory =11 | &
- ¥ ¥ v ¥ Py
o Distributed interrupt coherent DMA I0/IRQ coherdnce DMA 10/IRQ
planes planes plane plar1es planes plane

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Accelerator Socket

ESP Accelerator Socket

ESP accelerator L] |
HLS [C/C++, SystemC, Tensorflow*, Pytorch*] I —
RTL [Chisel, Verilog, ...] PLM
read/write config done
private DMA cfg
cache TLB ctrl regs IRQ
(1 2 3 45 514
coherence coherent-DMA DMA IO/IRQ NoC
planes planes planes plane

Third-Party Accelerator Socket*
third-party accelerator
(NVDLA*, ...)
read/write config done
AXl4 bus APB bus
< l > = > | IRQ
El_I_IL = J
2 IO/?RQ NoC
p%hr/l]é‘s plane o

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

ESP Software Socket

 ESP accelerator API

{

int *buffer = esp alloc(size);

I
|/
. . . ':' * Example of existing C application with ESP
o Generation OdeVICe dl"lver ! * accelerators that replace software kernels 2, 3,
) .] ! * and 5. The cfg k# contains buffer and the
and unit-test appllcatlon ! * accelerator configuration.
l' */
1
]
]
1
I

o Seamless shared memory

~ |' . for (...) {
<))
a C < App Ication kernel 1(buffer,...); /* existing software */
w O \
= 3 \ esp_run (cfg k2); /* run accelerator(s) */
£ . ESP Library \ esrun (oafg k3) |
; \
a kernel 4 (buffer,...); /* existing software */
ESP accelerator driver | -
— \ esp run (cfg kb5);
Q \ _ _
P Vo)
E g ESP core ESP a"OC \ validate (buffer) ; /* existing checks */
7 \
\ esp free(); /* memory free Y
Linux YT
-
-
R & COLUMBIA UNIVERSITY

ESP Platform Services

Accelerator tile

Reconfiqurable coherence
Point-to-point

ESP or AXl interface
DVFS controller

Miscellaneous Tile

Debuq interface
Coherent DMA

Shared peripherals (UART, ETH, ...)

PN
(o

©Luca Carloni

Processor Tile
Coherence

I/O and un-cached memor
Distributed interrupts
DVFS controller

Memory Tile
Independent DDR Channel

LLC Slice
DMA Handler

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK 15

The ESP Architecture
I TE
V The ESP Methodology

third-party accelerators’

Research & Teaching with ESP

25

i : .
-) W Bt
s = !

N
E|S|P

The Pillars of the ESP Approach

* Develop platforms, not just architectures
o A platform combines an architecture and a companion design
methodology
* Move from a processor-centric to an SoC-centric perspective
o The processor core is just one component among many others

* Raise the level of abstraction

o Move from RTL design to domain-specific system-level design with
high-level synthesis...

o ...but keep supporting different abstraction levels and design flows

* Promote Open-Source Hardware
o Build libraries of reusable components
o Support the integration of third-party IP components

_ P]
©Luca Carloni [N

The

S
’.

Application Developers

Eme

Hardware

Designers
=

[O

©Luca Carloni

P Vision: Domain Experts Can Design SoCs

KN

O PyTorch

~
\
J

SYSTEMC

L/

cHsSseo
——

Sysrem\ferilog‘
|

| Al S
}-ms4nﬂ4}‘ b

HLS
Design
Flows

Vivado HLS =
> Stratus HLS I:H:I [P
N

Catapult HLS

RTL
Design
Flows

4

~— T
N

s-ﬂ accelerators

o~ 0N
N

third-party

accelerators

third-party

L
HW IP Library

—
—

— Linux apps
ol barg—met_al apps
device drivers

~—_ S
~

third-party

SW Library

SoC » S
Integration '

Rapid

18

ESP Methodology In Practice

manual (opt.

Accelerator Flow Y. W SoC Flow
Generate accelerator } Generate sockets

q
%;»i
8

Configure RISC-V SoC
Compile bare-metal

Implement for FGPA

Configure runtime

Specialize accelerator

* this step is automated
* for ML applications

&2 COLUMBIA UNIVERSITY
H \J L/ ==
©Luca Carlonl . ‘ IN THE CITY OF NEW YORK

Compile Linux

Deploy prototype s

ESP Accelerator Flow

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface

-
-
-
-
—_____
-
-
-
-

i ~.—/fJ hls 4 ml SR E5E)

Programmer View
Design Space

2
(9]
&
= OPyTorch
g
5 HLS
= Design
=2 3 Flows RTL
Q.
s Iil __GQ.J Design Space
PaN
Goorone| (Ne4 g
SSSSSS c* [~
Sso) Code Transformation =)
g » 2, High-Level Synthesis ===
g %” cHSEL| RTL } 3 J Y
g Design
il L/JES““VE = Flows ' 2 >
Performance

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

©Luca Carloni

ESP Interactive Flow for SoC Integration

ESP SoC Generator

soC Data Cache cPU
virtexup (" Bigphysical area | Cache En.: | i B
ETH FPnew * Scatter/Gather - = —I
No JTAG L2 SETS: 512
Eth (192.168.1.2) L2 WAYS: T =
Use SGMII ~
- No SVGA LLCSETS: 1024 —
r=s SoC Integratio e
4D
“5u gccelerator g secwses 2
A=d ! ACCL2 WAYS: 4 —
1
PaN :
BE acce I erator NocC configuration NocC Tile Configuration
| Rows: 2 Cols:[2

Config

I Monitor DDR bandwidth
I Monitor memory access

I Moniter injection rate
I~ Monitor router ports
I Monitat accsierator status (Lo) [E8Y)

I Monitor L2 Hit/Miss sl b bl ot

" Monitor LLC Hit/Miss

Fiitiag i) (CicReg: (058 Fias AL ik sUF | Hasiz il Regy (00 T Has BLL T Cik BUE

I Mositor BYFS empty
Num CPUs: 1 f7iHas L2 | ClcRegs [0F &) Fisas PLL T Cik BUF 7 Has L2 [ol Reg: [0 =] Fivas PLL T 'Clk BUF
Num memory 1
Num 1O tiles: 1

Num accelerators: 0

Num CLK regions: 1

Num CLKBUF: 0

VFpoints: [

‘Generate SoC config

©Luca Carloni

& COLUMBIA UNIVERSITY
21

IN THE CITY OF NEW YORK

The ESP Architecture
I TE
V The ESP Methodology

third-party accelerators’

Research & Teaching with ESP

25

i : .
-) W Bt
s = !

N
E|S|P

Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

. - e e e Design: Complete design of
wmae ovsons [swaaronon| swonsrene |7 e aen susmace / \ o WAMI- Ap p runn in gon an FPGA
5 WAMI_APP_STEEPEST DESCENT| 5" _APP_HESSIAN | 10 WAMLAPPS0_UPDATE | 11 wamiarp_wuLT ‘l\ _ wiax | m p I ementat | on Of an ESP
2 won sorpmsare | sswamiaer a0 [wm._w_mmg_nmm- | architecture

Power consumption relative ko VF max DMA No

— featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

— SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

~
=

2 229 8% 9 9 999299
R TR xR R ER o

WL 0

3. 4 5 5 (¢ A 9 5 11 12 1% 14

— Five-plane, 2D-mesh NoC
efficiently supports multiple
independent frequency domains
and a variety of platform services

[P. Mantovani, L. P. Carloni et al., An FPGA-Based
FPGA Infrastructure Infrastructure for Fine-Grained DVFS Analysis in
e High-Performance Embedded Systems, DAC 20163]

=
_ 4| Motion Detection from
WAMI-Application

©Luca Carloni

Seamless Integration of NVDLA Accelerators

NoC Tile Configuration

e New design flow of general applicability
to integrate third-party accelerators

— demonstrated w/ NVIDIA Deep Learning
Accelerator (NVDLA)

e Transparent accelerator integration
— original software apps can run “as is”

. Llnear pe rformance Scalablllty THasL2 | ClkRegs [§ = M HasPLL [T CLKBUF | [MHasl2 | ClkReg: [6 =] [MHasPLL [T CLKBUF | M HasL2 | ClkRes: [= [HasPLL [~ CLKBUF
. aren T Scaling NVDLA instances and DDR channels
— when scaling up — @ 50 MHz
NVDLA instances T _§ 3.9
with DDR channels 8% 4 " LeNet 3.1 :
0= :
g€ >
NoC Tile Configuration E g 1
001 0 1
= E0om
0
I~risL2 | ChRege [0 3 Hes Pt = Lk aur [D. Giri et al. “Ariane + NVDLA: Seamless 1 NVDLA 2 NVDLA 3 NVDLA 4 NVDLA
T o B Third-Party IP Integration with ESP”, i1mem 2mem 3 mem 4 mem
. CARRV’20] r=v ctrl ctrl ctrl ctrl
HasL2 | ClkReg: [0 3] [~ HasPLL [CLKBUF | I HasL2 | ClkRegs [0 3} [~ HasPLL [~ CLKEBUF
©Luca Carloni EEE &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

hlsgml

* Open-source tool developed by
Fast ML Lab

* Translates ML algorithms into
accelerator specifications that
are synthesizable with high-
level synthesis tools for both
FPGA and ASIC
implementations

* Born for high-energy physics
(small and ultra-low latency
networks), it is gaining broad
applicability and a growing
community of contributors
and users

N
@0
A

©Luca Carloni

103.05579v3 [cs.LG] 23 Mar 2021

e |

rXxiv:

his4ml: An Open-Source Codesign Workflow to Empower
Scientific Low-Power Machine Learning Devices

Farah Fahim® Luca P. Carloni Philip Harris
Benjamin Haw ks Giuseppe Di Guglielmo Jeffrey Krupa
Christian Herwig Calumbia University Dylan Rankin

James Hirschauer New York, NY, USA MIT
Sergo Jindariani Cambridge, MA, USA
Nhan Tran*
Fermilab
Batavia, IL, USA
Manuel Blanco Valentin Thea Aarrestad Javier Duarte
Josiah Hester Hamza Javed UC San Diego
Yingyi Luo Vladimir Loncar lrhlhmmh
John Mamish Maurizio Pierini jduarte @ucsdedu
Seda Orgrenci-Memik Adrian Alan Pol
Northwestern University Sioni Surmmers
Evanston, IL, USA Eurcpean Organization for Nuclear
Research (CERN)
Geneva, Switzerland
Scott Hauck Jennifer Ngadiuba Mia Liu
Shih-Chieh Hsu Caltech Purdue University
University of Washington Pasadena, CA, USA West Lafayette, IN, USA
Seattle, WA, USA
Duc Hoang Edward Kreinar Zhenbin Wu

Rhodes College HawkEye360 University of llinois at Chicago

Memphis, TN, USA Herndon, VA, USA Chicage, IL, USA
ABSTRACT

Accessible machine learning algarithms, software, and diagnos-

tic toals for energy-eficient devices and systems are extremely
vahable across & broad range of application dumn: h| scientific

techniques—such as pruning and quantization-seare training—
which can be incorporated naturally into the device implernen-
tations. We expand on previous hlsanl work by extending capa-
I:I.hhu and techniques towards low-power implementaticns and

domains, _,un Iy impreve
imental design and
port demain scientists, we have developed hls4al, an op
software-hardware codesign workflow to interpret and translate
machine learning algerithms for unplementation with both FPGA
and ASIC technolagies. In this paper, wde-cuhtlwewnml
features of the hlsanl works) g netw ok optims

“Alsa uffiliste | with Neethwerwrs Unrvarstty

Premincon i -rt-u(c of jpart ox all of this wark for peescnal ar

dn-nn-nnnpnl:s.l o mq—mum«}r-m

l- -n--.ﬂ-hnng nd st copie s bawr this ntee xnd the full chation.
frn pagr tenand

I'-ul-ﬁn-—r.-mllu owner b

TapALL Beasarch Syevpensue 3 1 Mardh 2421, Sau ose, CA

® 2637 Capyright bubd by the cwneiawthoni)

dn:w:nn Ta sp-

d usability: new Pyraosw APls, quantzation-wware prun-
ing, end-to-end FPGA workflows, Jang pipeline kernels for low
pow er, and pew device backends include an ASIC wark flow, Taken
tagether. these and cootinued efforts in hls4al will arm a new gen-
eration of domain scentists with accessible, efficient, and powerful
toals for machine-learning -acoelerated discovery.

KEYWORDS

hlstml, machine Jearning, neural neteorks, timyML, FPGA, ASIC,
lowr -porwrer, Jow datency

ACM Reference Formal:

Farsh Fuhim, Benjamin Hewks, Christian Huewiy, James Hisachaise, Serge

Jnduriani, Mhae Tean, Luca P Cuedoeri, Cinmeppe i Coyglielous, Philip Haress,

L&q Erupa, Dylan Rankin, M snud Blance Valsatin, Josish Heser, Yingyi
Lo, John M smish, Sada Ongrenci-Memik, Thes Aarrestad, Haermn Jared,

Visdimir Loncar, M suriria Pierini, A drisn Alan Pol. Sioni Summers, Jarier

Duaste, Scott Hanck, Shib-Chish H, Jencifer Naacibs, Mia Lis, Duc

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP4ML

Open-source design flow to build and
program SoCs for ML applications

SW Application

Vision

/ kernel \
'\(/isionI || ——
. l= erne -
* Combines =@ and hls 4 ml ™~ sion A A
A=d
o ESP is a platform for heterogeneous SoC . ISW
i evelop app
design with ESPAML
o hlsdml automatically generates
accelerators from ML models - ; .
-generate
accelera?‘or tile socket \ ' ® ® Y
* Main contributions to ESP: ESP-generated acc —
. . lerat o °
o Automated integration of hls4ml ceceEreer wmpper E
accelerators o . . App invoking
o Accelerator-accelerator communication . accelerators
L] o

o Accelerator invocation API

[D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni. “ESP4ML: Platform-Based
Design of Systems-on-Chip for Embedded Machine Learning’’, DATE "20] Pa

&2 CoLUMBIA UNIVERSITY
H \J v, 4
©Luca Carloni . ‘ IN THE CITY OF NEW YORK 26

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs

Accelerator performance can vary
greatly based on coherence modes

* SoCs should support multiple
coherence modes for optimal
performance

Reinforcement learning can be used
to automatically manage coherence
mode decisions

With little overhead, Cohmeleon
provides significant performance
benefits for multiple objectives

Cohmeleon will be presented at
MICRO 2021 later this month

fully coherent
SOC coherent DMA
CPU CPU accelerator acceleraton
L1cache L1cache local mem local mem
? ? ?
L2 cache L2 cache cache DMA
L) ¢ 2
interconnect I .
(bus, NoC) | [gseseieieiess SONURRRSSSSSOOSOOOORS
T H—g Y y
N w \ 4
LLC partition ««« LLC partition : "DMA "DMA
mer$1 ol mem c’rrl<---é local mem local mem
t mem channels | acceleraton |acceleraton

LLC-coherent non-coherent

DMA

DMA

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

CSEE-4868: System-on-Chip Platforms

e Foundation course on the programming, design, and validation of SoCs
with emphasis on high-performance embedded applications

e Offered at Columbia since 2011, moved to upper-level curriculum in Fall
2016

— required course for CE BS program, elective for MS programs in CS and EE
e Course Goals

— mastering the HW and SW aspects of integrating heterogeneous components into
a complete system

— designing new components that are reusable across different systems, product
generations, and implementation platforms

— evaluating designs in a multi-objective optimization space
[L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019]

[o
©Luca Carloni [> COLUMBIA UNIVERSITY28

IN THE CITY OF NEW YORK

TeaChing With ESP https://www.esp.cs.columbia.edu

5=
l{;; Home Release Resources w News Press Team Contact

Teaching

Class projects

1) Design and integration of an accelerator with ESP

For this project each student will use ESP to design one or more accelerators and to integrate them in a system-on-chip (SoC), capable of booting Linux. Then the
student will evaluate the SoC both with RTL simulation and on FPCA.

To get a more practical sense of the project, you should familiarize yourself with ESP by using the resources on this website. Specifically:

e Check out the ESP website Homepage including the short introductory video.
* Watch the 16 minutes overview video in the Documentation section.

e Watch the videos and read the guides of the relevant hands-on tutorials available in the Documentation section. Especially relevant are the “How to: setup”, “How
to: design a single-core SoC" guides and the “How to: design an accelerator in ..“ guide that applies to your specific project.

e Explore the rest of the website to get the full picture of the ESP project.

Accelerator flows
For your project proposal, you are asked to choose which design flow you want to use to build your accelerator.

ESP offers multiple accelerator design flows: Stratus HLS flow (accelerator designed in SystemC), the Vivado HLS flow (accelerator designed in C/C++), the Catapult HLS
flow (accelerator designed in C/C++) and the his4ml flow (accelerators designed in Keras/Pytorch/ONNX).

Other options include designing the accelerator in RTL (Verilog, VHDL, SystemVerilog, Chisel). These other options do not have full support and documentation yet. It is
possible to use them, but they will require a bigger integration effort.
' [
[

SIP &2 CoLUMBIA UNIVERSITY
H \J L4
©Luca Carloni . ' IN THE CITY OF NEW YORK 29

In Summary: ESP for Open -Source Hardware

Home Release Re: ~ News Pre: Team Contact

« We contribute ESP to the OSH Efgipen,sou,ce SOCIQEEOPr: /e
community in order to support the
realization of v TR
* more scalable architectures for SoCs fb‘?f? S

that integrate

* more heterogeneous components,
thanks to a

* more flexible design methodology,
which accommodates different
specification languages and design flows

SoC
1,.",,'“.) 0 ~ Paper accepted at
~

MICRO 2021

=r “Cohmelzon

* ESP was conceived as a heterogeneous — =
integration platform from the start and e ource
tested through years of teaching at seere
Columbia University

Paper published in
lerator, memory, scratchpad and 1O tiles the IEEE Micro
special issue on
FPGA Computing

* We invite you to use ESP for your
projects and to contribute to ESP! P
©Luca Carloni A=4d

Read more

IN THE CITY OF NEW YORK

. ‘
—

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

1Y
i System Level Design Group

CSdb

eCU COMPUTER SCIENCE

P=N
DN

&2 COLUMBIA UNIVERSITY o
IN THE CITY OF NEW YORK ‘ — ‘

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

