
ESP: an Open-Source Platform
for Collaborative Design

of Heterogeneous Systems
Luca P. Carloni

ModSim 2021 - Workshop on Modeling &
Simulation of Systems and Applications

October 6th, 2021

The Age of Heterogeneous Computing

©Luca Carloni

• The migration towards heterogeneous SoC
architectures will accelerate, across almost all computing domains
o IoT devices, mobile devices, embedded systems, automotive electronics,

avionics, data centers and even supercomputers

• The set of heterogeneous SoCs in production in any given year will
be itself heterogeneous!
o no single SoC architecture will dominate all the markets!

• State-of-the-art SoC architectures integrate
increasingly diverse sets of components
o different CPUs, GPUs, hardware accelerators,

memory hierarchies, I/O peripherals, sensors,
reconfigurable engines, analog blocks…

I/O Core Core

Matrix Op.
accelerator

Graph
accelerator

Comp.
Vision

accelerator

Radio
accelerator

Signal Proc.
accelerator

I/O

2

Heterogeneity Increases Design Complexity

©Luca Carloni

• Heterogeneous architectures produce higher energy-
efficient performance, but make more difficult the tasks of
design, verification and programming
• at design time, diminished regularity in the system structure, chip layout

• at runtime, more complex hardware/software and management of shared
resources

• With each SoC generation, the addition of new capabilities
is increasingly limited by engineering effort and team sizes

• The biggest challenges are (and will increasingly be) found
in the complexity of system integration

3

Open-Source Hardware (OSH)

©Luca Carloni

• An opportunity to reenergize
the innovation in the
semiconductor and electronic
design automation industries

• The OSH community is gaining
momentum
o many diverse contributions from both

academia and industry

o multi-institution organizations

o government programs

Image Sources:
https://chipsalliance.org/
https://github.com/nvdla
https://www.openhwgroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/
https://riscv.org/

4

https://chipsalliance.org/
https://github.com/nvdla
https://www.openhwgroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/
https://riscv.org/

The Open Challenge of Open-Source Hardware

©Luca Carloni

• To date, however, most OSH projects are focused on the
development of individual SoC components, such as a
processor core or an accelerator

• This leaves open a critical challenge:
How can we realize a complete SoC for a given target
application domain by efficiently reusing and combining
a variety of independently developed, heterogeneous,
OSH components, especially if these components are
designed by separate organizations for separate purposes?

5

The Concept of Platform

©Luca Carloni

• Innovation in SoC architectures and their design methodologies
is needed to promote design reuse and collaboration
• Architectures and methodologies must be developed together

• Platform = architecture + methodology
• An SoC architecture enables design reuse when it simplifies the integration of

many components that are independently developed

• An SoC methodology enables design collaboration when it allows designers to
choose the preferred specification languages and design flows for the various
components

• An effective combination of architecture and methodology is a platform
that maximizes the potential of open-source hardware
• by scaling-up the number of components that can be integrated in an SoC and by

enhancing the productivity of the designers who develop and use them

6

ESP : An Open-Source Platform for SoC Design

©Luca Carloni 7

www.esp.cs.columbia.edu

©Luca Carloni

Outline

The ESP Architecture

The ESP MethodologyRapid
Prototyping

SoC
Integration

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’
SW

Linux apps
bare-metal apps
device drivers

SoC
SW Build

Research & Teaching with ESP

©Luca Carloni

• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

9

ESP Architecture

©Luca Carloni

• Processor off-the-shelf
o RISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)
o RISC-V IBEX (32 bit)
o L1 private cache

• L2 private cache
o Configurable size
o MESI protocol

• IO/IRQ channel
o Un-cached
o Accelerator config. registers,

interrupts, flush, UART, …

10

ESP Architecture: Processor Tile

©Luca Carloni

• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol

o Supports coherent-DMA

for accelerators

• DMA channels

• IO/IRQ channel

11

ESP Architecture: Memory Tile

©Luca Carloni

• Accelerator Socket

w/ Platform Services

o Direct-memory-access

o Run-time selection of

coherence model:

▪ Fully coherent

▪ LLC coherent

▪ Non coherent

o User-defined registers

o Distributed interrupt

12

ESP Architecture: Accelerator Tile

©Luca Carloni 13

ESP Accelerator Socket

©Luca Carloni

ke
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
se

r
m

o
d

e

ESP alloc

ESP Library

Application

• ESP accelerator API

o Generation of device driver

and unit-test application

o Seamless shared memory

/*

* Example of existing C application with ESP

* accelerators that replace software kernels 2, 3,

* and 5. The cfg_k# contains buffer and the

* accelerator configuration.

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */

esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);

}

validate(buffer); /* existing checks */

esp_free(); /* memory free */

}

14

ESP Software Socket

©Luca Carloni

Miscellaneous Tile Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence

Point-to-point

ESP or AXI interface

DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA

Shared peripherals (UART, ETH, …)

Independent DDR Channel

LLC Slice

DMA Handler

15

ESP Platform Services

©Luca Carloni

Outline

The ESP Architecture

The ESP MethodologyRapid
Prototyping

SoC
Integration

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’
SW

Linux apps
bare-metal apps
device drivers

Research & Teaching with ESP

©Luca Carloni

• Develop platforms, not just architectures
oA platform combines an architecture and a companion design

methodology

• Move from a processor-centric to an SoC-centric perspective
oThe processor core is just one component among many others

• Raise the level of abstraction
oMove from RTL design to domain-specific system-level design with

high-level synthesis…
o…but keep supporting different abstraction levels and design flows

• Promote Open-Source Hardware
oBuild libraries of reusable components
oSupport the integration of third-party IP components

17

The Pillars of the ESP Approach

©Luca Carloni

SoC
SW Build

Rapid
Prototyping

SoC
Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

The ESP Vision: Domain Experts Can Design SoCs

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party
accelerators’ SW

Linux apps
bare-metal apps
device drivers

HLS
Design
Flows

RTL
Design
Flows

Vivado HLS
Stratus HLS
Catapult HLS

18

©Luca Carloni

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize RTL

Specialize accelerator
* this step is automated
* for ML applications

Accelerator Flow

A
p

p
lic

at
io

n
 D

ev
e

lo
p

e
rs

H
ar

d
w

ar
e

D
es

ig
n

e
rs

HLS
Design
Flows

RTL
Design
Flows

…

…

…
accelerator

accelerator

accelerator

Compile bare-metal

Simulate system

Implement for FGPA

Generate sockets

Configure RISC-V SoC

SoC Flow
…

…

…
accelerator

accelerator

accelerator

Compile Linux

Deploy prototype

Configure runtime

**

19

ESP Methodology In Practice

©Luca Carloni

Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface
A

p
p

lic
at

io
n

 D
ev

el
o

p
er

s
H

ar
d

w
ar

e
D

es
ig

n
er

s

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
 /

 P
o

w
e

r

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…

…
accelerator

accelerator

accelerator

20

ESP Accelerator Flow

©Luca Carloni
21

SoC Integration

…

…

…
accelerator

accelerator

accelerator

21

ESP Interactive Flow for SoC Integration

©Luca Carloni

Outline

The ESP Architecture

The ESP MethodologyRapid
Prototyping

SoC
Integration

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’
SW

Linux apps
bare-metal apps
device drivers

Research & Teaching with ESP

©Luca Carloni

• Design: Complete design of
WAMI-App running on an FPGA
implementation of an ESP
architecture

– featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

– SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

– Five-plane, 2D-mesh NoC
efficiently supports multiple
independent frequency domains
and a variety of platform services

input output

Motion Detection from
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016]23

Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

Seamless Integration of NVDLA Accelerators

©Luca Carloni

1
2.1

3.1
3.9

0
1
2
3
4
5

1 NVDLA
1 mem

ctrl

2 NVDLA
2 mem

ctrl

3 NVDLA
3 mem

ctrl

4 NVDLA
4 mem

ctrl

fr
a

m
e

s
 /

 s
e

c
o

n
d

(n

o
rm

a
li

z
e

d
) LeNet

Scaling NVDLA instances and DDR channels
@ 50 MHz

• New design flow of general applicability
to integrate third-party accelerators

– demonstrated w/ NVIDIA Deep Learning
Accelerator (NVDLA)

• Transparent accelerator integration
– original software apps can run “as is”

• Linear performance scalability
– when scaling up

NVDLA instances
with DDR channels

[D. Giri et al. ‘’Ariane + NVDLA: Seamless
Third-Party IP Integration with ESP’’,
CARRV’20]

24

hls4ml

©Luca Carloni

• Open-source tool developed by
Fast ML Lab

• Translates ML algorithms into
accelerator specifications that
are synthesizable with high-
level synthesis tools for both
FPGA and ASIC
implementations

• Born for high-energy physics
(small and ultra-low latency
networks), it is gaining broad
applicability and a growing
community of contributors
and users

25

• Combines and

o ESP is a platform for heterogeneous SoC
design

o hls4ml automatically generates
accelerators from ML models

• Main contributions to ESP:
o Automated integration of hls4ml

accelerators

o Accelerator-accelerator communication

o Accelerator invocation API

Open-source design flow to build and
program SoCs for ML applications

ESP4ML

26

[D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni. ‘’ESP4ML: Platform-Based
Design of Systems-on-Chip for Embedded Machine Learning’’, DATE ’20]

©Luca Carloni

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs

• Accelerator performance can vary
greatly based on coherence modes
• SoCs should support multiple

coherence modes for optimal
performance

• Reinforcement learning can be used
to automatically manage coherence
mode decisions

• With little overhead, Cohmeleon
provides significant performance
benefits for multiple objectives

• Cohmeleon will be presented at
MICRO 2021 later this month

©Luca Carloni 27

©Luca Carloni

CSEE-4868: System-on-Chip Platforms
• Foundation course on the programming, design, and validation of SoCs

with emphasis on high-performance embedded applications

• Offered at Columbia since 2011, moved to upper-level curriculum in Fall
2016
– required course for CE BS program, elective for MS programs in CS and EE

• Course Goals

– mastering the HW and SW aspects of integrating heterogeneous components into
a complete system

– designing new components that are reusable across different systems, product
generations, and implementation platforms

– evaluating designs in a multi-objective optimization space

[L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019]

28

Teaching with ESP

©Luca Carloni

https://www.esp.cs.columbia.edu

29

©Luca Carloni

In Summary: ESP for Open-Source Hardware

30

• We contribute ESP to the OSH
community in order to support the
realization of
• more scalable architectures for SoCs

that integrate

• more heterogeneous components,
thanks to a

• more flexible design methodology,
which accommodates different
specification languages and design flows

• ESP was conceived as a heterogeneous
integration platform from the start and
tested through years of teaching at
Columbia University

• We invite you to use ESP for your
projects and to contribute to ESP!

https://www.esp.cs.columbia.edu

System Level Design Group

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

