Improving Model Performance, Portability and Productivity with Apache TVM and the OctoML platform

ModSim'21

Luis Ceze

Co-founder & CEO, OctoML.

Professor, University of Washington.

Credit goes to many collaborators at OctoML, UW, the Apache TVM community!

The Problem: Machine Learning is hard and costly to deploy

Weeks to months of effort to get a model ready for deployment.

Productivity gap

Changing deployment HW requires significant manual effort. Vendor lock-in.

Trend: Machine learning workload diversity is exploding

Computer Vision

paperswithcode.com

Trend: Machine learning workload diversity is exploding

paperswithcode.com

In [76]: len(abstracts)

Trend: ML hardware capabilities exploding

E.g., TensorCores

- FP16
- Int8
- Int4, Int2, Int1
- Bfloat16, TF32
- FP64
- Tensor Core sparsity

Trend: ML hardware capabilities exploding

More programmability! E.g.,

- Asynchronous copy instruction loads data directly from global memory into shared memory, optionally bypassing L1 cache
- New instructions for L2 cache management and residency controls.
- New warp-level reduction instructions supported by CUDA Cooperative Groups.

An exploding ecosystem...

Rapidly evolving ML software ecosystem

- Use-case or HW-specific stack often hand-written
- Painful and unproductive for users
- Unsustainable for HW/platform vendors: need to keep up with model and framework evolution

Cambrian explosion of HW backends

Automated, open source, unified optimization and compilation framework for deep learning.

Model In, HW-specific, native code out.

TVM: Automatic ML optimizer, compiler and runtime

Κ

m

TVM: Automatic ML optimizer, compiler and runtime w/ state-of-the-art performance m **Stvm Reduce model** Relay: High-level time-to-market Open source unified foundation for machine differentiable IR learning optimization and compilation. Tensor IR Build your Codegen backends for x86, Nvidia/CUDA, AMD CPU, Pre-optimized op libs: cuDNN, model once, run APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, MKL-DNN, NNPack, ROCm, ... anywhere VTA accelerator on FPGAs, ... Cut capital and operational ML Edge Cloud ASIC **FPGA** costs FPGA

TVM is an industry standard open source ML stack

Every "Alexa" wake-up today across all devices uses a model optimized with TVM

"[TVM enabled] real-time on mobile CPUs for free...We are excited about the performance TVM achieves." More than 85x speed-up for speech recognition model.

Microsoft

Bing query understanding: 112ms (Tensorflow) -> 34ms (TVM). QnA bot: 73ms->28ms (CPU), 10.1ms->5.5ms (GPU) - TVMconf 2019.

"TVM is key to ML Access on Hexagon" - Jeff Gehlhaar, VP Technology

Unified ML stack for CPU, GPU, NPU built on TVM. TVMconf 2020.

AMDA SIMa^{ai} *E* XILINX, UNTETHER AI

Cross-product of {Models} x {Hardware} is large. Strong community support makes diversity manageable and ensures future-proofness.

stvm Open source ~570+ contributors from industry and academia. **APACHE** 13% HW vendors, 35% research. 50%+ ML end user. 950+ attendees (intel Google Uber Adobe achronix ch DocuSign DAIMLER **ByteDance** Mentor MITSUBISHI' 🕐 NTT TRN ΖO BOSCH WELLS FARGO **vm**ware^{*} οх cruise SYNOPSYS' 🌮 Fidelity .åhabana 📥 Red Hat Honeywell DASE SONY codeplay

Cerebras

cisco

NEO

10

Why use Apache TVM?

ML end user: wants to quickly optimize their model on best/chosen HW target.

 $\bigcup_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\downarrow} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \qquad \bigoplus_{\bigoplus} \\bigoplus_{\bigoplus} \\bigoplus_{\bigoplus}$

- ML engineer for production apps
- Product R&D
- *ML researchers*

Open source, optimization and compilation framework for deep learning. Backends for x86, nVidia/CUDA, AMD, ARM CPU M/A-class

Stvm

& GPU, MIPS, RISC-V, Accelerators, FPGAs, ...

OctoML

HW chip vendor & platform provider: *wants to offer their customers the best ML SW stack for all models*

Edge

FPGA

Cloud

FPGA

ASIC

- System SW engineers
- Technical sales demos

- OctoML historical data
 - 2x avg improvement (up to 30x)

TVM Performance at OctoML

Case study:

- Support decision tree optimization
 - Convert to sparse tensors, work w/ Microsoft
- Hummingbird
 - Microsoft Azure Data
 - 2-3x throughput increases
 - Broader algorithm support on GPU and future accelerators

Need: End to end DL model optimization

Need: End to end classical ML model optimization

µTVM - Bare-metal model deployment for edge devices

Optimize, compile and package model for standalone bare metal deployment

See recent demo on TVM for Azure Sphere deployment.

ML-based optimizations

Benefit: low-level AST is a common representation (general, task invariant)

Extract hierarchical optimization search space from naive implementation (auto-scheduling).

Start from repository of existing cost models, augment with more experiments (ML-based cost models).

The more it is used, the better it gets!

OctoML

TVM technology advantages summary

Broad framework/model importer coverage: Caffe {2}, CoreML, Darknet, Keras, MXNet, ONNX, PyTorch, TensorFlow, TFLite. Support for training jobs coming soon.

Clean extensibility to new HW targets.

ML-driven auto-tuning/codegen

Bare-metal compilation for self-contained deployment in IoT and browsers (WASM/WebGPU)

HW-aware quantization

Support for sparse tensors (NLP, classical ML)

Split-graph execution for heterogeneous HW

Mix and match with operator libs and native compiler stacks

TVM deep dive

Importers from a variety of formats into TVM.

- Caffe {2}
- CoreML
- Darknet
- Keras
- MXNet
- ONNX
- PyTorch
- TensorFlow
- TFLite

Shape Information and Model Definition

```
shape_dict = {"input": x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
with tvm.transform.PassContext(opt_level=1):
    intrp = relay.create_executor("graph", mod, tvm.cpu(0), "llvm")
tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()
```



```
shape_dict = {"input": x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)
with tvm.transform.PassContext(opt_level=1):
    intrp = relay.create_executor("graph", mod, tvm.cpu(0), "llvm")
Run  tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()
```


TVM deep dive

A functional graph-level IR, supports richer programming model.

Functions, data types, primitive operations, tensors, and more.

Relay: Fusion

Combine into a single fused operation which can then be optimized specifically for your target.

Relay: Fusion

Combine into a single fused operation which can then be optimized specifically for your target.

Relay: Device Placement

Relay: Layout Transformation

Generate efficient code for different data layouts.

Relay: Layout Transformation

Generate efficient code for different data layouts.

TVM deep dive

Low level IR represents kernels which can be optimized and compiled for all supported platforms.

Tensor IR: The Kernel Enabler

```
@tvm.script.tir
class Module:
    def mmult(A: ty.handle, B: ty.handle, C: ty.handle) ->None:
        # function attr dict
        tir.func attr({"global symbol": "mmult", "tir.noalias": True})
        A = tir.buffer bind(A, [024, 1024], ...)
        B = tir.buffer bind(B, [024, 1024], ...)
        C = tir.buffer bind(C, [024, 1024], ...)
        # bodv
        tir.attr(C 1, "realize scope", "")
        tir.realize(C 10:1024, 0:1024])
       for x in tir.range(0, 1024):
           for y in tir.range(0, 1024):
                C 1[x, y] = tir.float320)
               for k in tir.range(0, 1024):
                    C 1[x, y] = (C 1[x, y] + (A 1[x, k]*B 1[k, y]))
```

- → An imperative IR for describing loop nests and low level code.
- → Can represent loop-y computations, perform allocation, bind tensors to backing buffers, and so on.
- → Platform agnostic CUDA-like IR.
- Provides multiple target support via LLVM, and source code generation.
- → Simple cross-platform runtime API which is implemented for CUDA, Vulkan, OpenCL, Metal and so on.

Automating Kernel Code Generation is Key

AutoTVM

AutoScheduling

Auto Tensorization

- Tensor intrinsics are important
 - NVIDIA Tensor Core
 - Intel VNNI
 - ARM dot
 - o ...
- Tensorization is hard in Ansor
 - Handling structural matching / rewriting?
- Auto Tensorization in meta schedule
 - Just a search rule!

• Step 1: Describe the Tensor Intrinsic!

```
@tvm.script.tir
def tensorcore_desc(a: ty.handle, b: ty.handle, c: ty.handle):
  . . .
  for i, j, k in tir.grid(16, 16, 16):
    . . .
    C[vii, vjj] = C[vii, vjj] + A[vii, vkk] * B[vjj, vkk]
@tvm.script.tir
def tensorcore impl(a: ty.handle, b: ty.handle, c: ty.handle):
  . . .
  tir.evaluate(tir.tvm mma sync(
    C.data, C.elem_offset // 256,
    A.data, A.elem offset // 256,
    B.data, B.elem_offset // 256,
    C.data, C.elem_offset // 256,
    dtype="handle",
  ))
```


• Step 2: Automatic structural fuzzy match

```
@tvm.script.tir
def batch_matmul(a: ty.handle, b: ty.handle, c: ty.handle):
    . . .
    for n, i, j, k in tir.grid(16, 128, 128, 128):
       C[vn, vi, vj] += A[vn, vi, vk] * B[vn, vj, vk]
@tvm.script.tir
def tensorcore_desc(a: ty.handle, b: ty.handle, c: ty.handle):
  . . .
  for i, j, k in tir.grid(16, 16, 16):
   C[vii, vjj] = C[vii, vjj] + A[vii, vkk] * B[vjj, vkk]
```


• Step 3: Automatic loop re-structuring & Mark tensorize region

```
@tvm.script.tir
def batch_matmul(a: ty.handle, b: ty.handle, c: ty.handle):
    . . .
    for i0, i1_o, i2_o, i3_o in tir.grid(16, 8, 8, 8):
        . . .
        for i1_i, i2_i, i3_i in tir.grid(16, 16, 16):
             . . .
           C[vn_1, vi_1, vj_1] += A[vn_1, vi_1, vk_1] * B[vn_1, vj_1, vk_1]
@tvm.script.tir
def tensorcore desc(a: ty.handle, b: ty.handle, c: ty.handle):
  . . .
  for i, j, k in tir.grid(16, 16, 16):
   C[vii, vjj] = C[vii, vjj] + A[vii, vkk] * B[vjj, vkk]
```


• Step 4: Working with other automatic rules + automatic tensorization

```
@tvm.script.tir
def batch_matmul(a: ty.handle, b: ty.handle, c: ty.handle):
    ...
    for i0, i1 o, i2 o, i3 o in tir.grid(16, 8, 8, 8):
        ...
        for i1_i_init, i2_i_init in tir.grid(16, 16):
            C[vn_init, vi_init, vj_init] = tir.float32(0)
        . . .
        tir.evaluate(tir.tvm mma sync(
            C.data, tir.floordiv(tir.get elem offset(C[vn 1, vi 1, vj 1], dtype="int32"), 256),
            A.data, tir.floordiv(tir.get_elem_offset(A[vn_1, vi_1, vk_1], dtype="int32"), 256),
            B.data, tir.floordiv(tir.get_elem_offset(B[vn_1, vj_1, vk_1], dtype="int32"), 256),
            C.data, tir.floordiv(tir.get elem offset(C[vn 1, vi 1, vj 1], dtype="int32"), 256),
            dtype="handle",
        ))
```

OctoML

....and it looks very promising!

(by Bohan from CMU)

- Surpasses cuBLAS perf
- Matches CUTLASS (tuned) perf
- 1.9x on small shapes
- 95% on large shapes
- Tensorized

GEMM Packed FP16 @ NVIDIA RTX 3080

RTX 3080

Best of both worlds

We care about performance, coverage, and portability, not code generation ideology.

{cuDNN, MKL, ARM Compute Lib, TensorRT, ...}

Best of both worlds

For each kernel (or supported subgraph):
 Use argmax(code generation, kernel library)

Results: up to 40% gains over TensorRT on Nvidia T4

Select Performance Results

Performance at OctoML in 2020/2021

TVM log₂ fold improvement over baseline Over 60 model x hardware benchmarking studies

Each study compared TVM against best* baseline on the target

Sorted by ascending log, gain over baseline

Model x hardware comparison points

Higher performance on non-public models

Model x hardware comparison points

Across a broad variety of models and platforms

Private model 📒 Publicly available model

Model x hardware comparison points

Results: TVM on popular CPUs and GPUs

Intel X86 - 2-5X Performance

Batch size = 16

²⁰ core Intel-Platinum-8269CY fp32 performance data

NVIDIA GPU - 20-50% versus TensorRT

Batch size = 16

Faster Kernels for Dense-Sparse Multiplication

- Performance comparison on PruneBERT
- 3-10x faster than cuBLAS and cuSPARSE.
- 1 engineer writing TensorIR kernels

Figure 3: Compiling an example decision tree using the GEMM strategy (algorithm 1).

Tree-models Microbenchmark: Batch w/ GPU

	rf	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	2.52s	8.1s	0.15s	0.11s	17.55s	0.02s
year	2.33s	17.23s	0.15s	0.10s	45.12s	0.03s
covtype	47.64s	24.77s	0.32s	0.26s	62.31s	0.06s
epsilon	11.22s	26.03s	0.36s	UX s -	OOM	0.14s
	xgb	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	2.01s	6.4s	0.16s	0.11s	16.89s	0.02s
year	5.77s	15.75s	0.14s	0.1s	44.82s	0.03s
covtype	63.45s	173.92s	1.47s	1.29s	445.89s	0.25s
epsilon	14.84s	29s	0.37s	0.28s	OOM	0.14s
	lgbm	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	3.76s	6.59s	0.16s 7 🚺	00,11s	17.70s	0.02s
year	6.18s	10.14s	0.14s	0.10s	OOM	0.03s
covtype	67.12s	158.3s	1.47s	1.29s	446s	0.25s
epsilon	14.13s	26.03s	0.36s	0.28s	OOM	0.14s

Tree-models Microbenchmark: Batch Inference on CPU

	rf	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	2.52s	8.1s	17.18s	17.28	92.58s	3.84s
year	2.33s	17.23s	17.95s	17.23s	154.71s	1.43s
covtype	47.64s	24.77s	38.27s	38.02s	260.55s	20.18s
epsilon	11.22s	26.03s	48.52s	45 47 Y	SEGFAULT	8.17s
	xgb	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	2.01s	6.4s	17.23s	16.38s	89.71s	1.93s
year	5.77s	15.75s	17.26s	15.74s	153.96s	1.77s
covtype	63.45s	173.92s	295.6s	295.3s	1255s	28.53s
epsilon	14.84s	29s	47.38s	48.78s	SEGFAULT	4.43s
	lgbm	onnx-ml	hb-pt	hb-ts	hb-onnx	hb-tvm
fraud	3.76s	6.59s	17.41s	16.43s	89.90s	1.97s
year	6.18s	10.14s	18.3s	18.01s	153.67s	1.78s
covtype	67.12s	158.3s	296s	294s	1256s	29.19s
epsilon	14.13s	26.03s	47.21s	5 / 89s	SEGFAULT	4.41s

https://sampl.cs.washington.edu/tvmconf/slides/2019/E13-Matteo-Interlandi.pdf

HB-TVM/GPU

HB-TVM/CPU

ONNXML/CPU

1000

10000

Ultra low bit-width quantization

- In addition to fp32, fp16, int8
- TVM supports bitserial ultra low bit code generation
 - Int{4,3,2,1}
- See Josh Fromm's MLSys 2020 talk and <u>paper</u>.

Squeezenet on RaspberryPi 3

Case Study: 90% cloud inference cost reduction

Background

- Top 10 Tech Company running multiple variations of customized CV models
- Model in batch processing /offline mode using standard HW targets of a major public cloud.
- Billions of inferences per month
- Benchmarking on CPU and GPU

<u>Results</u>

- 3.8x TensorRT 8bit to TVM 8bit
- 10x TensorRT 8bit to TVM 4bit
- Potential to reduce hourly costs by 90%

Platform

*V100 at hourly price of \$3.00 per hour, T4 at \$0.53

Making the most out of TVM & other stacks...

How do end users choose between all the possible configurations of:

- Model definitions
- Optimizations
- Kernel Combinations
- Target Devices
- And more

Automated platform for ML acceleration & deployment

Models: TensorFlow, PyTorch, ONNX, ...

Hosted service: No user infrastructure needed. Tuned optimization: Leveraging OctoML's ML tuning data. Automated/flexible packaging: Easy integration.

Optimized Model

OctoML

- Device-specific tuning for each HW platform
- Leverages tuning data from similar models, HW

Benchmarking Data

Packaging

- TVM C Runtime and C API
- Python API
- gRPC
- Docker

Octomizer Demo

OctoML

API access

Specify model file and input layer parameters. model_file = "mnist.onnx" input_shapes = {"Input3": (1, 3, 28, 28)} input_dtypes = {"Input3": "float32"} model = onnx_model.NONXModel(client, input_shapes, input_dtypes)

Upload the file to Octomizer. modelvar = model.upload("mnist.onnx")

Octomize it. wrkflow = modelvar.octomize(platform="broadwell") wrkflow.wait() wrkflow.save_package("mnist-octomized.whl")

Waitlist! https://octoml.ai

Thank you Apache TVM community! 600+!

The Octonauts!

Thank you!

Improving Model Performance, Portability and Productivity with Apache TVM and the OctoML platform

ModSim'21

Luis Ceze

Co-founder & CEO, OctoML.

Professor, University of Washington.

TVM, ONNX-Runtime, and MLIR

