
Luis Ceze

1

Improving Model Performance, Portability and Productivity
with Apache TVM and the OctoML platform

ModSim’21

Co-founder & CEO, OctoML.

Professor, University of Washington.

Credit goes to many collaborators at OctoML, UW, the Apache TVM community!

Engineering Cloud costs Silicon resources

Model Optimization &
Deployment

Cloud, Mobile, Edge InferenceData Collection and Processing Model Development &
Training

2

The Problem: Machine Learning is
hard and costly to deploy

Large gap not covered by
typical “MLops”

Performance/efficiency gap
Model optimization and tuning is essential for viable deployment.

Productivity gap
Weeks to months of effort to get a model ready for deployment.

Portability gap
Changing deployment HW requires significant manual effort. Vendor lock-in.

Trend: Machine learning workload diversity is
exploding

3
paperswithcode.com

Trend: Machine learning workload diversity is
exploding

4
* Non-cumulative plots

paperswithcode.com

Trend: ML hardware capabilities exploding

5

E.g., TensorCores
● FP16
● Int8
● Int4, Int2, Int1
● Bfloat16, TF32
● FP64
● Tensor Core sparsity

Trend: ML hardware capabilities exploding

6

More programmability! E.g.,
● Asynchronous copy instruction loads data directly from global memory into shared

memory, optionally bypassing L1 cache
● New instructions for L2 cache management and residency controls.
● New warp-level reduction instructions supported by CUDA Cooperative Groups.

An exploding ecosystem...

Cambrian explosion of
HW backends

Rapidly evolving ML
software ecosystem

7

● Use-case or HW-specific stack
often hand-written

● Painful and unproductive for
users

● Unsustainable for HW/platform
vendors: need to keep up with
model and framework evolution

Automated, open source, unified optimization
and compilation framework for deep learning.

Model In, HW-specific, native code out.

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

ML-based
Optimizations

AutoTVM
And

Autoscheduling

8

TVM: Automatic ML optimizer, compiler and
runtime

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

9

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

Cut capital and
operational ML
costs

Reduce model
time-to-market

Build your
model once, run
anywhere

TVM: Automatic ML optimizer, compiler and
runtime
w/ state-of-the-art performance

TVM is an industry standard open source ML stack

10

Every “Alexa” wake-up today across all devices uses a model
optimized with TVM

Bing query understanding: 112ms (Tensorflow) -> 34ms (TVM). QnA bot:
73ms->28ms (CPU), 10.1ms->5.5ms (GPU) - TVMconf 2019.

“TVM is key to ML Access on Hexagon” - Jeff Gehlhaar, VP Technology

“[TVM enabled] real-time on mobile CPUs for free...We are excited about the
performance TVM achieves.” More than 85x speed-up for speech recognition model.

Open source
~570+ contributors from
industry and academia.

Unified ML stack for CPU, GPU, NPU built on TVM. TVMconf 2020.
950+
attendees

13% HW vendors,
35% research, 50%+
ML end user.

Cross-product of {Models} x {Hardware} is large.
Strong community support makes diversity manageable
and ensures future-proofness.

11

ML end user: wants to quickly optimize their
model on best/chosen HW target.

HW chip vendor & platform provider: wants to offer
their customers the best ML SW stack for all models

● ML engineer for
production apps

● Product R&D
● ML researchers

● System SW engineers
● Technical sales demos

Open source, optimization and compilation
framework for deep learning.

Backends for x86, nVidia/CUDA, AMD, ARM CPU M/A-class
& GPU, MIPS, RISC-V, Accelerators, FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Why use Apache TVM?

Codegen backends

ML-based
Optimizations

12

TVM as a compiler and runtime framework

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL
model optimization

● OctoML historical data
○ 2x avg improvement (up to 30x)

Codegen backends

ML-based
Optimizations

13

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL
model optimization

Case study:
● Support decision tree optimization

○ Convert to sparse tensors,
work w/ Microsoft

● Hummingbird
○ Microsoft Azure Data
○ 2-3x throughput increases
○ Broader algorithm support on

GPU and future accelerators

Need: End to end
classical ML model
optimization

TVM as a compiler and runtime framework

Codegen backends

ML-based
Optimizations

14

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL
model optimization

Case study:
● ARM Ethos NPU

○ Both codegen and existing
○ Enables single compiler stack

across CPU, GPU, and NPU
● Amazon Inferentia

Need: End to end
classical ML model
optimization

Need: Enabling
existing kernel
operator libraries to
support frameworks.

Existing operator libs
and compilers

ASIC

TVM as a compiler and runtime framework

Codegen backends

ML-based
Optimizations

15

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL
model optimization

Need: End to end
classical ML model
optimization

Need: Enabling
existing kernel
operator libraries to
support frameworks.

Pre-optimized op libs
and existing compilers

Bring your
own RTL

Need: Support rapid HW/SW codesign.

Case study:
VTA Open Source DL accelerator
and “Bring your own RTL”

● Enables rapid feedback
loops for SW/HW codesign

● Verilator and other EDA
simulators supported

Existing operator libs
and compilers

ASICEdge
FPGA

Cloud
FPGA

TVM as a compiler and runtime framework

Codegen backends

ML-based
Optimizations

16

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL
model optimization

Need: End to end
classical ML model
optimization

Need: Enabling
existing kernel
operator libraries to
support frameworks.

Pre-optimized op libs
and existing compilers

Bring your
own RTL

Need: Support rapid HW/SW codesign.

Case study:
Huggingface PruneBERT

● 2x acceleration on AMD CPUs
● 3x on NVIDIA and AMD GPUs

Kernel wise: 3-10x faster than cuBLAS and
cuSPARSE
Single bit end to end acceleration (6-15x)

Existing operator libs
and compilers

ASICEdge
FPGA

Cloud
FPGA

Need: Enable users to write custom kernels with:
1. Full control (eg: a “nicer” CUDA)
2. Autotuning
3. Fully automatic autoscheduling

TVM as a compiler and runtime framework

µTVM - Bare-metal model deployment for edge devices

17

Optimize, compile and package model for standalone bare
metal deployment

See recent demo on TVM for Azure Sphere deployment.

µTVMML model

Optimized
model

Optimized
operators

Standalone
runtime

Edge device
board (ARM,
MIPS, RISC-V,...)

Flash
code

ML-based optimizations

Automatically adapt to hardware type
by learning, transferable to other tasks.

18

Extract hierarchical optimization search space
from naive implementation (auto-scheduling).

Start from repository of existing cost models,
augment with more experiments (ML-based
cost models).

The more it is used, the better it gets!

ML-based tuning

Baseline (cuDNN)

Black-box autotuning

+transferred model

19

TVM technology advantages summary
Broad framework/model importer coverage: Caffe {2}, CoreML, Darknet, Keras,

MXNet, ONNX, PyTorch, TensorFlow, TFLite.

Support for training jobs coming soon.

Clean extensibility to new HW targets.
Bare-metal compilation for

self-contained deployment in IoT

and browsers (WASM/WebGPU)

Mix and match with operator libs

and native compiler stacks +

Support for sparse tensors

(NLP, classical ML)

Split-graph execution for

heterogeneous HW

HW-aware quantization

ML-driven auto-tuning/codegen

20

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

TVM deep dive

Importers from a variety
of formats into TVM.

● Caffe {2}
● CoreML

● Darknet

● Keras

● MXNet

● ONNX

● PyTorch

● TensorFlow

● TFLite

21

shape_dict = {“input”: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
 intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

Shape Information
and Model Definition

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array

22

Compile and Create
Executor shape_dict = {“input”: x.shape}

mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
 intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array

23

Run

shape_dict = {“input”: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
 intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array

24

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

TVM deep dive

A functional
graph-level IR,
supports richer
programming model.

Functions, data types,
primitive operations,
tensors, and more.

25

Relay

26

Relay: Fusion

Combine into a single fused operation which can
then be optimized specifically for your target.

27

Relay: Fusion

Combine into a single fused operation which can
then be optimized specifically for your target.

28

Relay: Device Placement

Partition your network to run on multiple devices.

CPU

GPU

29

Relay: Layout Transformation

NHCW

NHCW

Generate efficient code for different data layouts.

30

Relay: Layout Transformation

NHWC

NHWC

Generate efficient code for different data layouts.

31

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

TVM deep dive

Low level IR
represents kernels
which can be
optimized and
compiled for all
supported
platforms.

Tensor IR: The Kernel Enabler

➔ An imperative IR for describing loop
nests and low level code.

➔ Can represent loop-y computations,
perform allocation, bind tensors to
backing buffers, and so on.

➔ Platform agnostic CUDA-like IR.
➔ Provides multiple target support via

LLVM, and source code generation.
➔ Simple cross-platform runtime API

which is implemented for CUDA,
Vulkan, OpenCL, Metal and so on.

32

@tvm.script.tir
class Module:
 def mmult(A: ty.handle, B: ty.handle, C: ty.handle) -> None:
 # function attr dict
 tir.func_attr({"global_symbol": "mmult", "tir.noalias": True})
 A_1 = tir.buffer_bind(A, [1024, 1024], ...)
 B_1 = tir.buffer_bind(B, [1024, 1024], ...)
 C_1 = tir.buffer_bind(C, [1024, 1024], ...)
 # body
 tir.attr(C_1, "realize_scope", "")
 tir.realize(C_1[0:1024, 0:1024])
 for x in tir.range(0, 1024):
 for y in tir.range(0, 1024):
 C_1[x, y] = tir.float32(0)
 for k in tir.range(0, 1024):
 C_1[x, y] = (C_1[x, y] + (A_1[x, k]*B_1[k, y]))

Automating Kernel Code Generation is Key

AutoTVM AutoScheduling
(e.g., Ansor)

Heavily template-based Template-free

Tensorization (limited) No tensorization

Faster compilationSlower compilation

Small design space Large design space

UncustomizableCustomize design space

Training (AutoDiff)?

Perf on quantized model?

Dynamic shape?

Automatic tensorization?

Faster tuning?

By Junru Shao, Tianqi Chen and team

● Tensor intrinsics are important

○ NVIDIA Tensor Core

○ Intel VNNI

○ ARM dot

○ …

● Tensorization is hard in Ansor

○ Handling structural matching / rewriting?

● Auto Tensorization in meta schedule

○ Just a search rule!

Auto Tensorization

Meta Schedule: Auto Tensorization in 4 Steps!
● Step 1: Describe the Tensor Intrinsic!

Meta Schedule: Auto Tensorization in 4 Steps!
● Step 2: Automatic structural fuzzy match

Meta Schedule: Auto Tensorization in 4 Steps!
● Step 3: Automatic loop re-structuring & Mark tensorize region

Meta Schedule: Auto Tensorization in 4 Steps!
● Step 4: Working with other automatic rules + automatic tensorization

….and it looks very promising!

(by Bohan from CMU)
● Surpasses cuBLAS perf
● Matches CUTLASS (tuned) perf
● 1.9x on small shapes
● 95% on large shapes
● Tensorized

40

vs

We care about performance, coverage, and portability, not code generation
ideology.

{cuDNN, MKL, ARM
Compute Lib,
TensorRT, …}and

Best of both worlds

41

For each kernel (or supported subgraph):
Use argmax(code generation, kernel library)

Best of both worlds

Results: up to 40% gains over TensorRT on Nvidia T4

Select Performance Results

42

43

Performance at OctoML in 2020/2021

Model x hardware comparison points

TVM log2 fold
improvement over
baseline

Over 60 model x hardware benchmarking studies

Each study compared TVM against best* baseline on the target

Sorted by ascending log2 gain over baseline

44
Model x hardware comparison points

TVM log2 fold
improvement over
baseline

Higher performance on non-public models

2.5x average performance improvement on non-public models
(2.1x across all)

45
Model x hardware comparison points

TVM log2 fold
improvement over
baseline

Across a broad variety of models and platforms

34x for Yolo-V3 on a MIPS based camera platform

5.3x: video analysis model on Nvidia T4 against TensorRT
4x: random forest on Nvidia 1070 against XGBoost

2.5x: MobilenetV3 on ARM A72 CPU

Results: TVM on popular CPUs and GPUs

20 core Intel-Platinum-8269CY fp32 performance data

Intel X86 - 2-5X Performance NVIDIA GPU - 20-50% versus TensorRT

V100 fp32 performance data
N

or
m

al
iz

ed
 p

er
fo

rm
an

ce

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

46
See https://github.com/tlc-pack/tlcbench for benchmark scripts

https://github.com/tlc-pack/tlcbench

Faster Kernels for Dense-Sparse Multiplication

● Performance comparison on
PruneBERT

● 3-10x faster than cuBLAS and
cuSPARSE.

● 1 engineer writing TensorIR
kernels

Classical ML (Hummingbird)
https://github.com/microsoft/hummingbird

48

https://sampl.cs.washington.edu/tvmconf/slides/2019/E13-Matteo-Interlandi.pdf

http://learningsys.org/neurips19/assets/papers/27_CameraReadySubmission_Hummingbird%20(5).pdf

https://sampl.cs.washington.edu/tvmconf/slides/2019/E13-Matteo-Interlandi.pdf

https://github.com/microsoft/hummingbird

Ultra low bit-width quantization

Squeezenet on RaspberryPi 3
● In addition to fp32, fp16, int8
● TVM supports bitserial ultra low bit

code generation
○ Int{4,3,2,1}

● See Josh Fromm’s MLSys 2020 talk

and paper.

49

https://proceedings.mlsys.org/paper/2020/hash/2a79ea27c279e471f4d180b08d62b00a-Abstract.html

Case Study: 90% cloud inference cost reduction

Background
● Top 10 Tech Company running

multiple variations of customized
CV models

● Model in batch processing /offline
mode using standard HW targets of
a major public cloud.

● Billions of inferences per month
● Benchmarking on CPU and GPU

Results
● 3.8x - TensorRT 8bit to TVM 8bit
● 10x - TensorRT 8bit to TVM 4bit
● Potential to reduce hourly costs

by 90%

*V100 at hourly price of $3.00 per hour, T4 at $0.53

Up to 10X
inferences/dollar

increase

51

Open source unified foundation for machine
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU,
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V,

VTA accelerator on FPGAs, ...

Edge
FPGA

Cloud
FPGA ASIC

Pre-optimized op libs: cuDNN,
MKL-DNN, NNPack, ROCm, ...

Relay: High-level
differentiable IR

Tensor IR

Making the most out of TVM & other stacks...

How do end users
choose between all
the possible
configurations of:

● Model definitions
● Optimizations
● Kernel

Combinations
● Target Devices
● And more

 Automated platform for ML acceleration &
deployment

52

Models: TensorFlow, PyTorch, ONNX, ...

Hosted service: No user infrastructure needed.

Tuned optimization: Leveraging OctoML’s ML tuning data.

Automated/flexible packaging: Easy integration.

OctoML
platform

● Device-specific tuning for
each HW platform

● Leverages tuning data
from similar models, HW

Benchmarking DataOptimized Model Packaging

● TVM C Runtime and C API
● Python API
● gRPC
● Docker

53

Octomizer Demo

API access

Waitlist! https://octoml.ai

https://docs.google.com/file/d/1j8JO8rA7w-QgR-QYRu5CuDsTjEoBUWxW/preview

Thank you Apache TVM community! 600+!

54

55

The Octonauts!

https://octoml.ai/careers

https://octoml.ai/careers

56

Improving Model Performance, Portability and Productivity
with Apache TVM and the OctoML platform

Thank you!

Luis Ceze

ModSim’21

Co-founder & CEO, OctoML.

Professor, University of Washington.

TVM

TVM, ONNX-Runtime, and MLIR

57

 HLO Dialect

Tensorflow

Polyhedral passes

LLVM

Relay

ONNX-Runtime PyTorch

TorchScript/TorchFX

ML guided code generation

MLIR

MLIR

Legend:
WIP integration
Possible integration)
Functional integration
External component

