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Engineering  Cloud costs  Silicon resources

Model Optimization & 
Deployment

Cloud, Mobile, Edge InferenceData Collection and Processing Model Development & 
Training
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The Problem: Machine Learning is 
hard and costly to deploy

Large gap not covered by 
typical “MLops”

Performance/efficiency gap
Model optimization and tuning is essential for viable deployment.

Productivity gap
Weeks to months of effort to get a model ready for deployment.

Portability gap
Changing deployment HW requires significant manual effort. Vendor lock-in. 



Trend: Machine learning workload diversity is 
exploding
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Trend: Machine learning workload diversity is 
exploding
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* Non-cumulative plots
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Trend: ML hardware capabilities exploding
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E.g., TensorCores
● FP16
● Int8
● Int4, Int2, Int1
● Bfloat16, TF32
● FP64
● Tensor Core sparsity



Trend: ML hardware capabilities exploding

6

More programmability! E.g., 
● Asynchronous copy instruction loads data directly from global memory into shared 

memory, optionally bypassing L1 cache
● New instructions for L2 cache management and residency controls.
● New warp-level reduction instructions supported by CUDA Cooperative Groups.



An exploding ecosystem... 

Cambrian explosion of 
HW backends

Rapidly evolving ML 
software ecosystem
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● Use-case or HW-specific stack 
often hand-written

● Painful and unproductive for 
users

● Unsustainable for HW/platform 
vendors: need to keep up with 
model and framework evolution

Automated, open source, unified optimization 
and compilation  framework for deep learning.

Model In, HW-specific, native code out. 



Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

ML-based
Optimizations

AutoTVM
And

Autoscheduling
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TVM: Automatic ML optimizer, compiler and 
runtime

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR
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Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR

Cut capital and 
operational ML 
costs

Reduce model 
time-to-market

Build your 
model once, run 
anywhere

TVM: Automatic ML optimizer, compiler and 
runtime 
w/ state-of-the-art performance



TVM is an industry standard open source ML stack
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Every “Alexa” wake-up today across all devices uses a model 
optimized with TVM

Bing query understanding: 112ms (Tensorflow) -> 34ms (TVM).    QnA bot: 
73ms->28ms (CPU), 10.1ms->5.5ms (GPU) - TVMconf 2019.

“TVM is key to ML Access on Hexagon”  - Jeff Gehlhaar, VP Technology

“[TVM enabled] real-time on mobile CPUs for free...We are excited about the 
performance TVM achieves.”  More than 85x speed-up for speech recognition model.

Open source
~570+ contributors from 
industry and academia. 

Unified ML stack for CPU, GPU, NPU built on TVM. TVMconf 2020.
950+ 
attendees

13% HW vendors, 
35% research, 50%+ 
ML end user.

Cross-product of {Models} x {Hardware} is large.
Strong community support makes diversity manageable 
and ensures future-proofness. 
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ML end user: wants to quickly optimize their 
model on best/chosen HW target. 

HW chip vendor & platform provider: wants to offer 
their customers the best ML SW stack for all models

● ML engineer for 
production apps

● Product R&D
● ML researchers

● System SW engineers
● Technical sales demos

Open source, optimization and compilation  
framework for deep learning. 

Backends for x86, nVidia/CUDA, AMD, ARM CPU M/A-class 
& GPU, MIPS, RISC-V, Accelerators, FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Why use Apache TVM?



Codegen backends

ML-based
Optimizations
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TVM as a compiler and runtime framework

Relay: High-level differentiable IR

Tensor IR

Need: End to end DL 
model optimization

● OctoML historical data
○ 2x avg improvement (up to 30x)



Codegen backends

ML-based
Optimizations
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Relay: High-level differentiable IR

Tensor IR

Need: End to end DL 
model optimization

Case study: 
● Support decision tree optimization

○ Convert to sparse tensors, 
work w/ Microsoft

● Hummingbird
○ Microsoft Azure Data
○ 2-3x throughput increases
○ Broader algorithm support on 

GPU and future accelerators

Need: End to end 
classical ML model 
optimization

TVM as a compiler and runtime framework



Codegen backends

ML-based
Optimizations
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Relay: High-level differentiable IR

Tensor IR

Need: End to end DL 
model optimization

Case study: 
● ARM Ethos NPU

○ Both codegen and existing
○ Enables single compiler stack 

across CPU, GPU, and NPU
● Amazon Inferentia

Need: End to end 
classical ML model 
optimization

Need: Enabling 
existing kernel 
operator libraries to 
support frameworks.

Existing operator libs 
and compilers

ASIC

TVM as a compiler and runtime framework



Codegen backends

ML-based
Optimizations
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Relay: High-level differentiable IR

Tensor IR

Need: End to end DL 
model optimization

Need: End to end 
classical ML model 
optimization

Need: Enabling 
existing kernel 
operator libraries to 
support frameworks.

Pre-optimized op libs 
and existing compilers

Bring your 
own RTL

Need: Support rapid HW/SW codesign.

Case study: 
VTA Open Source DL accelerator 
and “Bring your own RTL”

● Enables rapid feedback 
loops for SW/HW codesign

● Verilator and other EDA 
simulators supported

Existing operator libs 
and compilers

ASICEdge 
FPGA

Cloud 
FPGA

TVM as a compiler and runtime framework



Codegen backends

ML-based
Optimizations
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Relay: High-level differentiable IR

Tensor IR

Need: End to end DL 
model optimization

Need: End to end 
classical ML model 
optimization

Need: Enabling 
existing kernel 
operator libraries to 
support frameworks.

Pre-optimized op libs 
and existing compilers

Bring your 
own RTL

Need: Support rapid HW/SW codesign.

Case study: 
Huggingface PruneBERT

● 2x acceleration on AMD CPUs
● 3x on NVIDIA and AMD GPUs

Kernel wise: 3-10x faster than cuBLAS and 
cuSPARSE
Single bit end to end acceleration (6-15x)

Existing operator libs 
and compilers

ASICEdge 
FPGA

Cloud 
FPGA

Need: Enable users to write custom kernels with:
1. Full control (eg: a “nicer” CUDA)
2. Autotuning
3. Fully automatic autoscheduling

TVM as a compiler and runtime framework



µTVM - Bare-metal model deployment for edge devices
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Optimize, compile and package model for standalone bare 
metal deployment 

See recent demo on TVM for Azure Sphere deployment. 

µTVMML model

Optimized 
model

Optimized 
operators

Standalone 
runtime

Edge device 
board (ARM, 
MIPS, RISC-V,...)

Flash 
code



ML-based optimizations

Automatically adapt to hardware type 
by learning, transferable to other tasks.
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Extract hierarchical optimization search space 
from naive implementation (auto-scheduling). 

Start from repository of existing cost models, 
augment with more experiments (ML-based 
cost models). 

The more it is used, the better it gets!

ML-based tuning

Baseline (cuDNN)

Black-box autotuning 

+transferred model
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TVM technology advantages summary
Broad framework/model importer coverage: Caffe {2}, CoreML, Darknet, Keras, 

MXNet, ONNX, PyTorch, TensorFlow, TFLite.

Support for training jobs coming soon. 

Clean extensibility to new HW targets. 
Bare-metal compilation for 

self-contained deployment in IoT 

and browsers (WASM/WebGPU)

Mix and match with operator libs 

and native compiler stacks +

Support for sparse tensors 

(NLP, classical ML)   

Split-graph execution for 

heterogeneous HW

HW-aware quantization

ML-driven auto-tuning/codegen  
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Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR

TVM deep dive

Importers from a variety 
of formats into TVM.

● Caffe {2}
● CoreML

● Darknet

● Keras

● MXNet

● ONNX

● PyTorch

● TensorFlow

● TFLite
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shape_dict = {“input”: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
    intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

Shape Information 
and Model Definition

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array
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Compile and Create 
Executor shape_dict = {“input”: x.shape}

mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
    intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array
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Run

shape_dict = {“input”: x.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)

with tvm.transform.PassContext(opt_level=1):
    intrp = relay.create_executor("graph", mod, tvm.cpu(0), ”llvm”)

tvm_output = intrp.evaluate()(tvm.nd.array(x), **params).asnumpy()

https://tvm.apache.org/docs/api/python/relay/frontend.html#tvm.relay.frontend.from_onnx
https://tvm.apache.org/docs/api/python/ir.html#tvm.transform.PassContext
https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.create_executor
https://tvm.apache.org/docs/api/python/ndarray.html#tvm.nd.array
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Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR

TVM deep dive

A functional 
graph-level IR, 
supports richer 
programming model.

Functions, data types, 
primitive operations, 
tensors, and more.
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Relay
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Relay: Fusion

Combine into a single fused operation which can 
then be optimized specifically for your target.
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Relay: Fusion

Combine into a single fused operation which can 
then be optimized specifically for your target.
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Relay: Device Placement

Partition your network to run on multiple devices.

CPU

GPU
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Relay: Layout Transformation

NHCW

NHCW

Generate efficient code for different data layouts.
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Relay: Layout Transformation

NHWC

NHWC

Generate efficient code for different data layouts.
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Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR

TVM deep dive

Low level IR 
represents kernels 
which can be 
optimized and 
compiled for all 
supported 
platforms.



Tensor IR: The Kernel Enabler

➔ An imperative IR for describing loop 
nests and low level code.

➔ Can represent loop-y computations, 
perform allocation, bind tensors to 
backing buffers, and so on.

➔ Platform agnostic CUDA-like IR. 
➔ Provides multiple target support via 

LLVM, and source code generation.
➔ Simple cross-platform runtime API 

which is implemented for CUDA, 
Vulkan, OpenCL, Metal and so on.
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@tvm.script.tir 
class Module:
    def mmult(A: ty.handle, B: ty.handle, C: ty.handle) -> None:
        # function attr dict
        tir.func_attr({"global_symbol": "mmult", "tir.noalias": True})
        A_1 = tir.buffer_bind(A, [1024, 1024], ...)
        B_1 = tir.buffer_bind(B, [1024, 1024], ...)
        C_1 = tir.buffer_bind(C, [1024, 1024], ...)
        # body
        tir.attr(C_1, "realize_scope", "")
        tir.realize(C_1[0:1024, 0:1024])
        for x in tir.range(0, 1024):
            for y in tir.range(0, 1024):
                C_1[x, y] = tir.float32(0)
                for k in tir.range(0, 1024):
                    C_1[x, y] = (C_1[x, y] + (A_1[x, k]*B_1[k, y]))



Automating Kernel Code Generation is Key

AutoTVM AutoScheduling 
(e.g., Ansor)

Heavily template-based Template-free

Tensorization (limited) No tensorization

Faster compilationSlower compilation

Small design space Large design space

UncustomizableCustomize design space

Training (AutoDiff)?

Perf on quantized model?

Dynamic shape?

Automatic tensorization?

Faster tuning?

By Junru Shao, Tianqi Chen and team



● Tensor intrinsics are important

○ NVIDIA Tensor Core

○ Intel VNNI

○ ARM dot

○ …

● Tensorization is hard in Ansor

○ Handling structural matching / rewriting?

● Auto Tensorization in meta schedule

○ Just a search rule!

Auto Tensorization



Meta Schedule: Auto Tensorization in 4 Steps!
● Step 1: Describe the Tensor Intrinsic!



Meta Schedule: Auto Tensorization in 4 Steps!
● Step 2: Automatic structural fuzzy match



Meta Schedule: Auto Tensorization in 4 Steps!
● Step 3: Automatic loop re-structuring & Mark tensorize region



Meta Schedule: Auto Tensorization in 4 Steps!
● Step 4: Working with other automatic rules + automatic tensorization



….and it looks very promising!

(by Bohan from CMU)
● Surpasses cuBLAS perf
● Matches CUTLASS (tuned) perf
● 1.9x on small shapes
● 95% on large shapes
● Tensorized
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vs

We care about performance, coverage, and portability, not code generation 
ideology.

{cuDNN, MKL, ARM 
Compute Lib, 
TensorRT, …}and

Best of both worlds
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For each kernel (or supported subgraph): 
Use argmax(code generation, kernel library)

Best of both worlds

Results: up to 40% gains over TensorRT on Nvidia T4



Select Performance Results
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Performance at OctoML in 2020/2021

Model x hardware comparison points

TVM log2 fold 
improvement over 
baseline

Over 60 model x hardware benchmarking studies

Each study compared TVM against best* baseline on the target

Sorted by ascending log2 gain over baseline
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Model x hardware comparison points

TVM log2 fold 
improvement over 
baseline

Higher performance on non-public models

2.5x average performance improvement on non-public models
(2.1x across all)
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Model x hardware comparison points

TVM log2 fold 
improvement over 
baseline

Across a broad variety of models and platforms

34x for Yolo-V3 on a MIPS based camera platform

5.3x: video analysis model on Nvidia T4 against TensorRT
4x: random forest on Nvidia 1070 against XGBoost

2.5x: MobilenetV3 on ARM A72 CPU



Results: TVM on popular CPUs and GPUs 

20 core Intel-Platinum-8269CY fp32 performance data

Intel X86 - 2-5X Performance NVIDIA GPU - 20-50% versus TensorRT

V100 fp32 performance data 
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See https://github.com/tlc-pack/tlcbench for benchmark scripts

https://github.com/tlc-pack/tlcbench


Faster Kernels for Dense-Sparse Multiplication

● Performance comparison on 
PruneBERT

● 3-10x faster than cuBLAS and 
cuSPARSE.

● 1 engineer writing TensorIR 
kernels



Classical ML (Hummingbird)
https://github.com/microsoft/hummingbird
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https://sampl.cs.washington.edu/tvmconf/slides/2019/E13-Matteo-Interlandi.pdf

http://learningsys.org/neurips19/assets/papers/27_CameraReadySubmission_Hummingbird%20(5).pdf

https://sampl.cs.washington.edu/tvmconf/slides/2019/E13-Matteo-Interlandi.pdf

https://github.com/microsoft/hummingbird


Ultra low bit-width quantization

Squeezenet on RaspberryPi 3
● In addition to fp32, fp16, int8
● TVM supports bitserial ultra low bit 

code generation
○ Int{4,3,2,1}

● See Josh Fromm’s MLSys 2020 talk 

and paper. 
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https://proceedings.mlsys.org/paper/2020/hash/2a79ea27c279e471f4d180b08d62b00a-Abstract.html


Case Study: 90% cloud inference cost reduction

Background
● Top 10 Tech Company running 

multiple variations of customized 
CV models

● Model in batch processing /offline 
mode using standard HW targets of 
a major public cloud.

● Billions of inferences per month
● Benchmarking on CPU and GPU

Results
● 3.8x - TensorRT 8bit to TVM 8bit
● 10x - TensorRT 8bit to TVM 4bit
● Potential to reduce hourly costs 

by 90%

*V100 at hourly price of $3.00 per hour, T4 at $0.53 

Up to 10X 
inferences/dollar 

increase
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Open source unified foundation for machine 
learning optimization and compilation.

Codegen backends for x86, Nvidia/CUDA, AMD CPU, 
APU & GPU, ARM CPU M/A-class & GPU, MIPS, RISC-V, 

VTA accelerator on FPGAs, ...

Edge 
FPGA

Cloud 
FPGA ASIC

Pre-optimized op libs: cuDNN, 
MKL-DNN, NNPack, ROCm, ...

Relay: High-level 
differentiable IR

Tensor IR

Making the most out of TVM & other stacks...

How do end users 
choose between all 
the possible 
configurations of:

● Model definitions
● Optimizations
● Kernel 

Combinations
● Target Devices
● And more



 Automated platform for ML acceleration & 
deployment

52

Models: TensorFlow, PyTorch, ONNX, ...

Hosted service: No user infrastructure needed.

Tuned optimization: Leveraging OctoML’s ML tuning data.

Automated/flexible packaging: Easy integration.

OctoML 
platform

● Device-specific tuning for 
each HW platform

● Leverages tuning data 
from similar models, HW

Benchmarking DataOptimized Model Packaging

● TVM C Runtime and C API
● Python API
● gRPC
● Docker
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Octomizer Demo

API access

Waitlist!   https://octoml.ai

https://docs.google.com/file/d/1j8JO8rA7w-QgR-QYRu5CuDsTjEoBUWxW/preview


Thank you Apache TVM community! 600+!
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The Octonauts!

https://octoml.ai/careers

https://octoml.ai/careers
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Improving Model Performance, Portability and Productivity 
with Apache TVM and the OctoML platform

Thank you!

Luis Ceze

ModSim’21

Co-founder & CEO, OctoML. 

Professor, University of Washington.



TVM

TVM, ONNX-Runtime, and MLIR
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      HLO Dialect

Tensorflow

Polyhedral passes

LLVM

Relay

ONNX-Runtime PyTorch

TorchScript/TorchFX

ML guided code generation

MLIR

MLIR

Legend:
WIP integration
Possible integration)
Functional integration
External component


