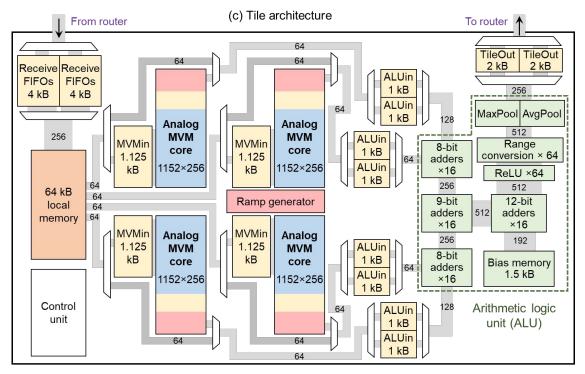


Exceptional service in the national interest

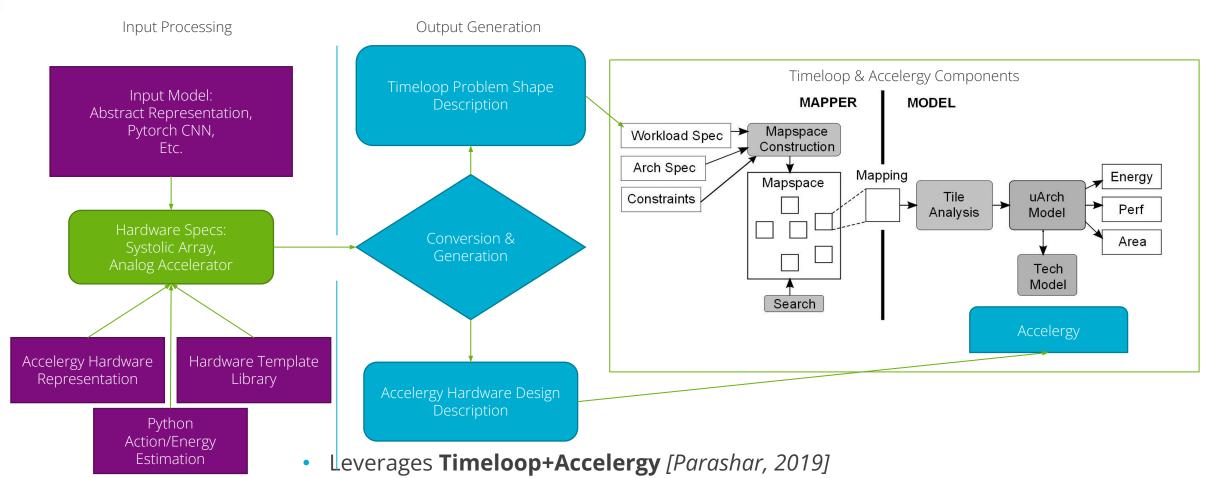
ATHENA

ENABLING HIGH SPEED PERFORMANCE ESTIMATES FOR NOVEL HARDWARE DESIGN SPACE EXPLORATION

Mark Plagge, Suma Cardwell, and Clayton Hughes


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

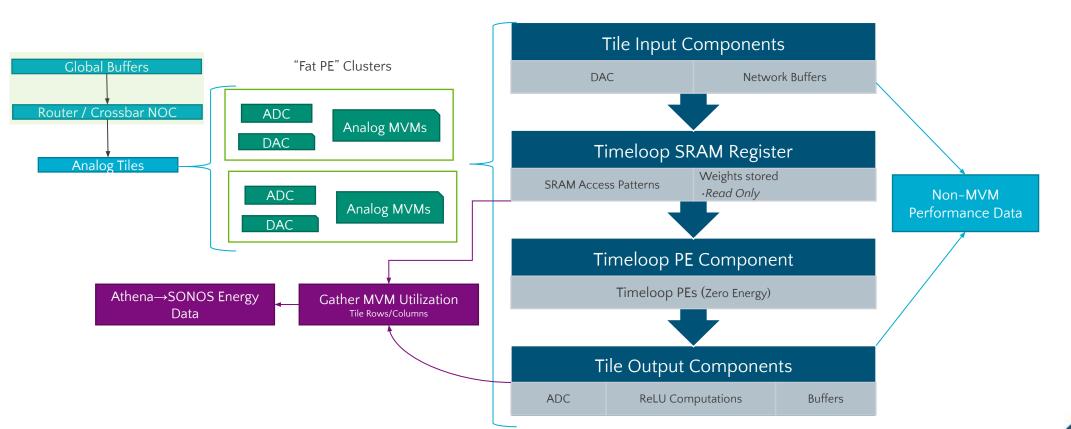
ATHENA – Rapid Performance Estimation for Novel Hardware


- Analog and neuromorphic accelerators have the potential to dramatically increase efficiency of many aspects of computing
- Analog devices are extremely low-energy when computing Matrix Vector Multiply operations

- There is a lack of fast and flexible benchmarking and design-space exploration tools for analog devices
- Yet there are many such tools for digital compute devices
- ATHENA: Leveraging analytical techniques to provide hardware performance estimates
- Currently supports the SONOS tiled MVM hardware architecture

SONOS Analog Accelerator Hardware Tile Architecture Design [Xiao, 2021]

ATHENA Plug-In

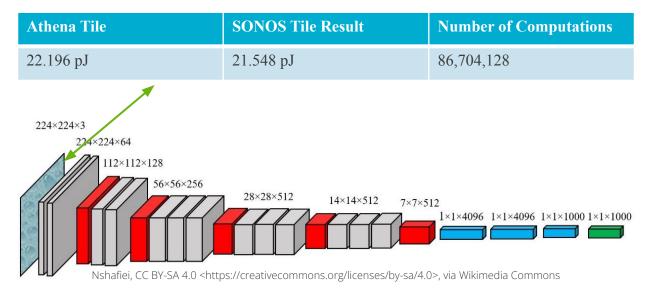

- ATHENA takes a problem layer and hardware description then:
 - Generates Accelergy energy table using Python
 - Generates Timeloop problem space
 - Runs Timeloop with hardware plugins
 - Collects and presents results

Analog Tiles as Dataflow Hardware

- ATHENA wraps the complex logic of an Analog cluster into a group of PEs and memory components •
- Each "**Fat PE**" cluster contains dummy memory which is mapped to the analog array's energy Analog devices have energy costs based on the size of the compute

 - Timeloop only supports a fixed per-MAC energy cost •

To Timeloop the hardware appears as a set of PEs with zero energy cost behind a memory buffer

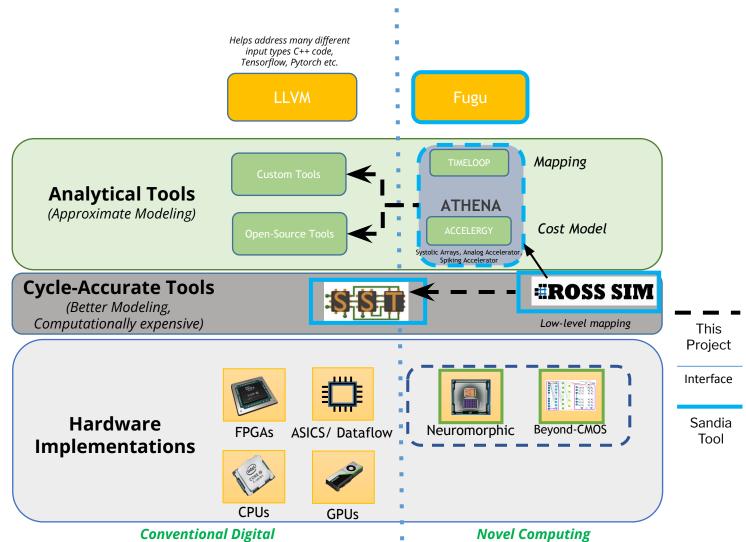

ATHENA Accuracy Compared to SONOS Simulator

VGG 16

ATHENA MVM Compute Energy Accuracy

Layer	Total MACs	Athena	SONOS	Difference
Conv. 1	86 704 128	$2.1431\mathrm{pJ}$	$1.0652\mathrm{pJ}$	67.1968%
Conv. 2	1849688064	$8.5201\mathrm{pJ}$	$3.7520\mathrm{pJ}$	77.7058%
Conv. 3	924 844 032	$2.1295\mathrm{pJ}$	$2.1042\mathrm{pJ}$	1.1940%
Conv. 4	1849688064	$4.0181\mathrm{pJ}$	$3.9704\mathrm{pJ}$	1.1940%
Conv. 5	924844032	$1.0647\mathrm{pJ}$	$1.0395\mathrm{pJ}$	2.3951%
Conv. б	1849688064	$2.1295\mathrm{pJ}$	$2.0791\mathrm{pJ}$	2.3951%
Conv. 7	1849688064	$2.1295\mathrm{pJ}$	$2.0791\mathrm{pJ}$	2.3951%
Conv. 8	924844032	$1.0647\mathrm{pJ}$	$1.0146\mathrm{pJ}$	4.8186%
Conv. 9	1849688064	$2.1295\mathrm{pJ}$	$2.0293\mathrm{pJ}$	4.8186%
Conv. 10	1849688064	$2.1295\mathrm{pJ}$	$2.0293\mathrm{pJ}$	4.8186%
Conv. 11	462 422 016	$0.53237\mathrm{pJ}$	$0.48288\mathrm{pJ}$	9.7503%
Conv. 12	462422016	$0.53237\mathrm{pJ}$	$0.48288\mathrm{pJ}$	9.7503%
Conv. 13	462422016	$0.53237\mathrm{pJ}$	$0.48288\mathrm{pJ}$	9.7503%

ATHENA Tile Compute Energy Accuracy


• Results are promising

- Accuracy of the total tile shows good potential
- SONOS simulator incorporates data from experimental devices by Infineon Tech.
- Comparing MVM compute energy shows a greater inaccuracy
 - This is attributed to ATHENA's naive implementation of mapping; The SONOS Simulator uses hand-mapped dataflows for improved performance

Future Work

- Support digital spiking neuromorphic hardware
 - Model spiking activity

- Support for other emerging devices
- Based on these preliminary results, we believe that ATHENA will be useful as part of a design-space-exploration tool for novel acceleration hardware:
 - Use ATHENA to search for efficient hardware designs and dataflow mapping
 - Leverage a highly detailed simulation model to gather more detailed results

