
Modeling Modern GPU Applications in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

sinclair@cs.wisc.edu

Collaborators: John Alsop (AMDR), Brad Beckmann (AMDR), Bobby Bruce (UCD),
Alexandru Dutu (AMDR), Anthony Gutierrez (AMDR), Michael LeBeane (AMDR/Qualcomm),

Jason Lowe-Power (UCD), Matthew Poremba (AMDR), Mike Swift (UW), and others

Students: Anuska Chandrashekar, Preyesh Dalmia, Gaurav Jain, Charles Jamieson,
Suchita Pati, Kyle Roarty, Bobbi Yogatama, and others

mailto:sinclair@cs.wisc.edu

Let’s begin by thinking about a mouse

2

Walt Disney Co. in the beginning:

• Decided to be an animator

• Initial success in 1920’s and 1930’s

• Forced to expand into other areas

3

Walt Disney Co. as we know it today:

4

Walt Disney Co. as we know it today:

5

Personal Assistants

(GP)GPUs Also Need to Evolve

Graph

Analytics

Irregular

Scientific

Computing

Raytracing

Machine Learning

6

Often reuse data, some utilize fine-grained synchronization

Widely varying utilization

These Applications Drive Systems Reqs.
But they have different characteristics:

Machine Learning

Need high fidelity tools to model and prototype optimizations

Some have tight real-time deadlines

7

…

Outline

• Motivation

• Background

• Improvements

• Conclusion & Future Work

8

Prior CPU-GPU Support in gem5

Execution-driven, cycle-level

▪ Accurately models complex CPUs & GPUs

▪ Rapid prototyping of new features

▪ Validate simulation with execute-in-execute

Prior work [Gutierrez et al. HPCA '18]

▪ Runs unmodified ROCm 1.6 user stack

▪ Simulates HIP and HCC applications

9

[Gutierrez et al., HPCA ‘18]

Solid foundation, but does not support ML workloads

HCC

MEM

CU

Application
source

x86 ELF

GCN3 ELF +
Code metadata

ROCr

HCC
Libraries

ROCk

CP

hardware
models

GPU

ROCt

User space

OS kernel space

Runtime loader loads
GCN3 ELF into memory

CPU

x86
Core

Outline

• Motivation

• Background

• Improvements

• Enabling Support for ML Workloads in gem5

• Making gem5 GPU models easier to use

• Improved, higher fidelity support for gem5 GPU

• Future Work & Conclusions

10

Flow of a ML Application

ML Framework Application

Caffe TensorFlow
Other

Frameworks

MIOpen

ROCm User-level Software

(runtime, driver)

CPUs

ML Native Application

GPUs

Highly-tuned Kernels (e.g., OpenCL,

Tensile, rocBLAS, Assembly)

Support

needed

11

MIOpen Also Requires Additional Libraries

OpenCL HIP

MIOpen

rocBLAS (+ Tensile)

hipBLAS

ROCm

Build on prior work to add support for ML workloads [Alsop, et al. IISWC ‘19]
12

MEM

CUCU
CUCU

CP
X86

Core
x86

Core

hardware

models

CPU GPU

GCN3 ELF +

Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpen
App

Source

User space

OS kernel space

• Specific software is required

• Initially ROCm 1.6.x & gcc 5.4 [Gutierrez et al. HPCA ‘18]

• We updated to ROCm 4.0 & gcc 7 [Roarty et al. gem5 Wkshp ‘20]

• Barriers to entry

• Challenging to install the libraries correctly

• Lack of support and documentation

• Need to support and model newer GPUs, GPU features

• Improve accuracy of publicly available GPU models

Challenges Running (ML in) GPU Model

14

Our work removes/reduces these barriers to entry

Outline

• Motivation

• Background

• Improvements

• Enabling Support for ML Workloads in gem5

• Making gem5 GPU models easier to use

• Improved, higher fidelity support for gem5 GPU

• Future Work & Conclusions

15

• Docker container

• Properly installs ROCm software stack

• Publicly Available!

• Integrated into gem5 repo: https://gem5.googlesource.com/

• Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper
Nom.]

• Used in continuous integration to ensure GPU support is stable

• Suggest building applications requiring ROCm with docker

Creating Portable Resources

16

https://gem5.googlesource.com/

MIOpen Programming Model

Host

Application
MIOpen

Chooses a MIOpen

backend at compile time

Passes GPU mem.

as a (void * ptr)

Calls appropriate

kernel

HIP

OpenCL

17

• Codebase and simulator aren't optimized for each other

• Example: MIOpen uses OpenCL kernels

• Requires online compilation → slow, unsupported in gem5

• Solution:

• Generate kernel files ahead of time for desired GPU

• Link kernel files into Docker container

• Avoid re-generating kernels

• Reduces simulation time

Running ML Applications in gem5

18

Mostly automated process eases adoption by new users

Ex. gem5-resources README (DNNMark)

Outline

• Motivation

• Background

• Improvements

• Enabling Support for ML Workloads in gem5

• Making gem5 GPU models easier to use

• Improved, Higher Fidelity gem5 GPU support

• Future Work & Conclusions

20

Improving gem5’s GPU Support
• Support for ROCm 4.0 in SE mode

• Support for Carrizo-class dGPUs (gfx803)

• Support for Vega-class dGPUs & APUs (gfx900, gfx902)

• Improved concurrency via dynamic register allocation

• Improved concurrency via better dependency management

• CU masking support to run kernels on a subset of GPU resources

• Extend BLAS support to use kernels that run on real devices [Roarty et al. gem5 Wkshp‘20]

• Multi-chiplet support – more representative of future GPUs [Yogatama et al. gem5 Wkshp‘20]

• Scripts to compare gem5’s fidelity against modern GPUs

• Properly report device properties for (ML) programs that dynamically select kernels

• …
21Today’s focus

Improving Register Allocation Support

• Simple dependence tracking – only 1 wavefront/CU at a time

• Even if sufficient registers are available for more WFs

• Issue: unrealistic relative to real GPUs

• Solution: add dynamic register allocator support

• If enough registers available, schedule additional WFs concurrently/CU

• Potentially can utilize all WF slots depending on register requirements

• More complex, higher performance designs possible

22

Intuition: Dynamic allocator significantly improves accuracy

Dynamic Register Allocator Performance

0

0.5

1

1.5

2

2.5

3

3.5

N
ro

m
a
li
z
e
d

 S
p

e
e
d

u
p

Static Register Allocation Dynamic Register Allocation

Reality: dynamic register allocator 6% worse than simple – why?
23

Issue: Dependence Tracking

• GPU model did not track dependencies well → many stalls

• Result: optimizing register allocation in isolation was insufficient

• Issue: Proprietary GPU dependence checking sols unknown

• Solution: simple, in-order scoreboard

• Bit per register to track use status

• Cleared on instruction completion

• Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls
24

Vega GPU Support

Source: AMD

25

Added new HW support and configurations to model Vega

Validating gem5 Vega GPU configuration
• Validated Vega GPU configuration against Vega 56 GPU

• Ran sets of GEMMs sequentially and concurrently with CU masking & streams

26Average: 6% (Worst case: 10%) Average: 6% (Worst case: 7%)

S
p

e
e
d

u
p

#
 D

y
n

a
m

ic
 I

n
s
tr

u
c

ti
o

n
s

How Does GAP Work?

App(s) to Run
and GAP

configuration

Profiler
Metrics

Run
benchmarks

on gem5

Run each app
on real GPU

gem5-stats.txt

prof-metrics.csv

Using GAP to iteratively refine gem5 GPU models

gem5 blog post and performance regression testing coming soon!

Match
corresponding

metrics

Per App
Comparison

File

• Issue: need standard approach for evaluating new configurations

• Solution: gem5 GPU Accuracy Profiler (GAP)

Outline

• Motivation

• Background

• Improvements

• Future Work & Conclusions

28

But what about TensorFlow?!

Next Steps

ML Framework Application

Caffe TensorFlow
Other

Frameworks

MIOpen

ROCm User-level Software

(runtime, driver)

CPUs

ML Native Application

GPUs

Highly-tuned Kernels (e.g., OpenCL,

Tensile, rocBLAS, Assembly)

Support

still

needed

29

Modeling High-Level ML Frameworks in SE Mode is Challenging

Adding Full-System GPU Mode Support

• Additional Challenge:

• Updating SE mode for new ROCm versions is time consuming

• Ideally, avoid updating gem5 every time ROCm is updated

• Solution: add GPU FS mode support

• Can checkpoint and fast-forward to focus on simulating ROIs

• Newer ROCm versions more easily supported

• Enables studying full impact of drivers on ML applications

• Current status: able to run simple TF apps in gem5 on GPU!

30

Goal: support GPU FS mode in next gem5 release

Conclusions & Future Work

• Our updates enable gem5 to run native ML applications

• Significant updates to improve both usability and accuracy

• Reduced barriers to entry for simulation

• gem5.org/documentation/general_docs/gpu_models/GCN3

• Further enhancements on the way:

• FS and SE mode support – checkpointing and fast-forwarding

• Additional publicly available applications and resources

• Performance regression testing

• Improved ability to run at different fidelity levels 31

gem5.org/documentation/general_docs/gpu_models/GCN3

32

ENS-1925485

