Modeling Modern GPU Applications in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

Collaborators: John Alsop (AMDR), Brad Beckmann (AMDR), Bobby Bruce (UCD),
Alexandru Dutu (AMDR), Anthony Gutierrez (AMDR), Michael LeBeane (AMDR/Qualcomm),
Jason Lowe-Power (UCD), Matthew Poremba (AMDR), Mike Swift (UW), and others

Students: Anuska Chandrashekar, Preyesh Dalmia, Gaurav Jain, Charles Jamieson,
Suchita Pati, Kyle Roarty, Bobbi Yogatama, and others

mailto:sinclair@cs.wisc.edu

0 Let's begin by thinking about a mouse

0 Walt Disney Co. In the beginning:

 Decided to be an animator
e |nitial success in 1920’s and 1930’s

* Forced to expand into other areas

0 Walt Disney Co. as we know It today:

0 Walt Disney Co. as we know It today:

(GP)GPUs Also Need to Evolve

Irregular
Scientific
Computing

Graph
Analytics

maz
~—

Personal Assistants

6

These Applications Drive Systems Reds.
But they have different characteristics:

""""" 2-8

Speech Text

-

Machine Learnin

tttttt

Often reuse data, some utilize fine-grained synchronization
Widely varying utilization
Some have tight real-time deadlines

Need high fidelity tools to model and prototype optimizations .

Outline

 Background
* Improvements
* Conclusion & Future Work

o

Application
source

Prior CPU-GPU Support in gem>5S

. Code metadata

G

GCN3 ELF +
Execution-driven, cycle-level

x86 ELF

-

hardware

= Accurately models complex CPUs & GPUs
» Rapid prototyping of new features

= Validate simulation with execute-in-execute

Prior work [Gutierrez et al. HPCA '18]

models

= Runs unmodified ROCm 1.6 user stack

» Simulates HIP and HCC applications

[Gutierrez et al., HPCA ‘18]

Solid foundation, but does not support ML workloads :

Outline

* Improvements
 Enabling Support for ML Workloads in gem5
« Making gem5 GPU models easier to use
* Improved, higher fidelity support for gem5 GPU

 Future Work & Conclusions

10

Support __J
needed

Flow of a ML Application

ML Framework Application ML Native Application

Other
Frameworks

,

MIOpen

TensorFlow

ROCm User-level Software Highly-tuned Kernels (e.g., OpenCL,
(runtime, driver) Tensile, rocBLAS, Assembly)

11

0 MIOpen Also Requires Additional Libraries

|| hipBLAS
rocBLAS (+ Tensile)

Build on prior work to add support for ML workloads [Alsop, et al. ISWC ‘19]

12

App
Source

rocBLAS, ...

User space

OS kernel space

(

I
I
I
T
\

I
I
|
J !
I
!

v
'
-z]

\-

GCN3 ELF +
Code metadata

M

.

x86 ELF

)

E—
P —_—
I
|
\[_ E— _]'
hardware
models
==
I
I

o Challenges Running (ML in) GPU Model

« Specific software Is required
 Initially ROCm 1.6.x & gcc 5.4 [Gutierrez et al. HPCA ‘18]
 We updated to ROCm 4.0 & gcc 7 [Roarty et al. gem5 Wkshp 20]

« Barriers to entry
* Challenging to install the libraries correctly
« Lack of support and documentation
* Need to support and model newer GPUs, GPU features

* Improve accuracy of publicly available GPU models

Our work removes/reduces these barriers to entry

14

Outline

* Improvements

 Making gem5 GPU models easier to use
* Improved, higher fidelity support for gem5 GPU

 Future Work & Conclusions

15

0 Creating Portable Resources

* Docker container
* Properly installs ROCm software stack

d‘ docker

* Publicly Available!
 Integrated into gemb5 repo:

« Added bmks & doc. in gem5-resources [Bruce ISPASS 20 Best Paper
Nom.]

« Used in continuous integration to ensure GPU support is stable
» Suggest building applications requiring ROCm with docker

16

https://gem5.googlesource.com/

MIOpen Programming Model

Host Passes GPU mem.
U a5 5 (void * ptr)

Chooses a MIOpen Calls appropriate
backend at compile time kernel

17

Running ML Applications in gem5

» Codebase and simulator aren't optimized for each other

* Example: MIOpen uses OpenCL kernels
* Requires online compilation - slow, unsupported in gemb5

e Solution:
« Generate kernel files ahead of time for desired GPU

 Link kernel files into Docker container
« Avoid re-generating kernels
 Reduces simulation time

Mostly automated process eases adoption by new users

18

0 Ex. gem5-resources README (DNNMark

& C O 8 resources.gems.org/resources/dnn-mark Y% © @O © @ @nfN o =

DNNMark is a benchmark framework used to characterize the performance of deep neural network (DNN) primitive workloads.
The gem5 DNNMark tests can be used to test the GCN3-GPU model.

Compiling DNNMark, compiling the GCN3_X86 gemb5, and running DNNMark on gem5 is dependent on the gcn-gpu docker image, built from the uti1/dockerfiles/gen-gpu/Dockerfile on the gemb stable
branch.

Compilation and Running

To build DNNMark: NOTE: Due to DNNMark building a library, it's important to mount gem5-resources to the same directory within the docker container when building and running, as otherwise the
benchmarks won't be able to link against the library. The example commands do this by using -v s (pup) : $ {pwD} in the docker run commands

cd src/gpu/DNNMark

docker run --rm -v ${PWD}:${PWD} -w ${PWD} -u $UID:$GID gcr.io/gem5-test/gcn-gpu ./setup.sh HIP
docker run --rm -v ${PWD}:${PWD} -w ${PWD}/build -u $UID:$GID gcr.io/gem5-test/gcn-gpu make

DNNMark uses MIOpen kernels, which are unable to be compiled on-the-fly in gem5. We have provided a python script to generate these kernels for a subset of the benchmarks for a gfx801 GPU with 4 CUs
by default

To generate the MIOpen kernels:

cd src/gpu/DNNMark
docker run --rm -v ${PWD}:${PWD} -v${PWD}/cachefiles:/root/.cache/miopen/2.9.0 -w ${PWD} gecr.io/gem5-test/gcn-gpu python3 generate cachefiles.py cachefiles.csv [--gfx-version={gfx801,gfx803

Due to the large amounts of memory that need to be set up for DNNMark, we have added in the ability to MMAP a file to reduce setup time, as well as added a program that can generate a 2GB file of floats.

To make the MMAP file:
cd src/gpu/DNNMark

g++ -std=c++0x generate_rand data.cpp -o generate_rand_data
./generate rand data

DNNMark is a GPU application, which requires that gemb5 is built with the GCN3_X86 architecture. To build GCN3_X86:

Working directory is your gem5 directory
docker run --rm -v ${PWD}:${PWD} -w ${PWD} -u $UID:$GID gcr.io/gemb-test/gcn-gpu scons -sQ -J$ (nproc) build/GCN3_X86/gem5.opt

To run one of the benchmarks (fwd softmax) in gem5:

Assuming gem5 and gemS-resources are sub-directories of the current directory
docker run --rm -v ${PWD}:${PWD} -v ${PWD}/gem5-resources/src/gpu/DNNMark/cachefiles:/root/.cache/miopen/2.9.0 -w ${PWD} gcr.io/gem5-test/gcn-gpu gem5/build/GCN3 X86/gem5.opt gem5/configs/e

Outline

* Motivation
* Background

* Improvements
* Enabling Support for ML Workloads in gem5
 Making gem5 GPU models easier to use
 Improved, Higher Fidelity gem5 GPU support

 Future Work & Conclusions

20

Improving gemd’s GPU Support

Support for ROCm 4.0 in SE mode
Support for Carrizo-class dGPUs (gfx803)

Support for Vega-class dGPUs & APUs (gfx900, gfx902) i

Improved concurrency via dynamic register allocation i

Improved concurrency via better dependency management

CU masking support to run kernels on a subset of GPU resources
Extend BLAS support to use kernels that run on real devices [Roarty et al. gem5 Wkshp20]

Multi-chiplet support — more representative of future GPUs [Yogatama et al. gem5 Wkshp20]

Scripts to compare gem5’s fidelity against modern GPUs

Properly report device properties for (ML) programs that dynamically select kernels

Today’s focus 21

0 Improving Register Allocation Support

« Simple dependence tracking — only 1 wavefront/CU at a time
« Even if sufficient registers are available for more WFs

e |ssue: unrealistic relative to real GPUSs

« Solution: add dynamic register allocator support
* |If enough registers available, schedule additional WFs concurrently/CU
« Potentially can utilize all WF slots depending on register requirements
 More complex, higher performance designs possible

Intuition: Dynamic allocator significantly improves accuracy

22

0 Dynamic Register Allocator Performance

m Static Register Allocation mDynamic Register Allocation

3.5
o
S5 3
D
o 2.5
(@
0 2
©
Q15
©
g 1
= 0.5
2 1l | LI | | |
0
N & 2 + O O &
é‘\&%ogo ¢ & & & & &000
"l'b é‘& . \(\0? é\QQ §0& 0’60 00 000 Q”b‘@ d&(o 0§ \)6‘9 s@‘\'o \) ‘\' &0 &&0 \,0\ ‘O QQAQ bf 4@9 @\6/.58 (° ‘c“bs)
RV
0&\ \(\ {\.i.&& tbso ‘<$ ‘00 . Q},o 9\0 QQQ . \(\Q . \(\Q \0." 0‘00 o\‘\é/ O &é/ ,@6/ 0 6/
b§° Q& o ¢ 0(\\ 0\0 K X éo < &Q Ay &Q
& & P P
0 2 4@/ S/
é&e'e AS) ‘@
S

Reality: dynamic register allocator 6% worse than simple —why?

23

0 Issue: Dependence Tracking

 GPU model did not track dependencies well = many stalls
* Result: optimizing register allocation in isolation was insufficient

* |ssue: Proprietary GPU dependence checking sols unknown

Scoreboard

« Solution: simple, in-order scoreboard Register File
* Bit per register to track use status

« Cleared on instruction completion
* Checks for RAW/WAW hazards

Result: up to 44% reduction in stalls

24

a
c
ol
=
LLl
5
Q
=]
s
=
vl

Vega GPU Support

CuUu Cu Cu CU cu Ccu Cu CcCU Ccu Ccu Cu cdaU cu Ccu Cu cU

L1S L1S | L1S L1S L1S L1s L1S L1S L1S L1S || L1S || L1S L1S L1S || L1S | L15

Shader Array

BELLES 1S and KS 1S and KS 1S and KS

L2S

Scalable Data Fabric
HBM2

Source: AMD

Added new HW support and configurations to model Vega

25

0 Validating gem5S Vega GPU configuration

« Validated Vega GPU configuration against Vega 56 GPU

« Ran sets of GEMMs sequentially and concurrently with CU masking & streams

Speedup of parallel vs sequential GEMMs Executed instructions per GEMM
W \Vega 56 mgemb5 B \Vega 56 Hgem5
1
» 7-00E+07
0.9 c
O 6.00E+07
0.8 -'8
0.7 > 5.00E+07
S 06 @ 4,00E+07
B 4. =
o 0. ‘O 3.00E+07
o 04 S
p) w Z2.00E+07
0.3 §
0.2 A 1.00E+07
01 * 0.00E+00
0 4k 1k 4k 1k 4k2k 4k2k 4k1k 4k 1k

4k 1k 64 4k 2k 64 4k 1k 256 64s 64p 64s 64p 256s 256p

Average: 6% (Worst case: 10%) Average: 6% (Worst case: 7%) 26

How Does GAP Work?

* |ssue: need standard approach for evaluating new configurations

« Solution: gem5 GPU Accuracy Profiler (GAP)

Per App
Comparison

Using GAP to iteratively refine gem5 GPU models
gem5 blog post and performance regression testing coming soon!

Outline

* Motivation

* Background

* Improvements

 Future Work & Conclusions

But what about TensorFlow?!

28

Next Steps

ML Framework Application

ML Native Application
Support

still —

needed Other

TensorFlow
Frameworks

r-------

!

ROCm User-level Software Highly-tuned Kernels (e.g., OpenCL,
(runtime, driver) Tensile, rocBLAS, Assembly)

<

Modeling High-Level ML Frameworks in SE Mode is Challenging

0 Adding Full-System GPU Mode Support

« Additional Challenge:
* Updating SE mode for new ROCm versions is time consuming
 Ideally, avoid updating gem5 every time ROCm Is updated

« Solution: add GPU FS mode support
« Can checkpoint and fast-forward to focus on simulating ROls
 Newer ROCm versions more easily supported
« Enables studying full impact of drivers on ML applications
« Current status: able to run simple TF apps in gem5 on GPU!

Goal: support GPU FS mode in next gem>5 release

30

@ Conclusions & Future Work

* Our updates enable gemb5 to run native ML applications

« Significant updates to improve both usability and accuracy
 Reduced barriers to entry for simulation

* Further enhancements on the way:.
 FS and SE mode support — checkpointing and fast-forwarding
« Additional publicly available applications and resources
« Performance regression testing
* Improved ability to run at different fidelity levels a1

gem5.org/documentation/general_docs/gpu_models/GCN3

RE-gem3: Building Sustainable Research Infrastructure

by Jason Lowe-Power and Matt Sinclair on Sep 12, 2019 | Tags: Measurements, Methodology, Simulators

ENS-1925485

