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R&E Networks are the nervous system for

Large-scale Science
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ESnet Network and its
o 40% utilization in 2019 over
average 100GB links

2000

* Networks are built for resilience
— Science traffic is highly variable
— Resources are often
underutilized and expensive
e Quality of Network Performance is
crucial for Science

Need for predictability and infrastructure
adaptability

* Challenge: how can we optimize
network resources (i.e. links) to adapt
to variable workloads?
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e.g. 4-node network

Data-driven (active) learning through experience
Deep reinforcement Iearnmg (DRL)
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Representing Network as Deep Learning Problem
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Improving packet delivery at high loads
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Self-driving networks improves network performance at high loads
- Leverage traffic patterns into DRL learning to cater to different traffic characteristics
- Integrate multiple network controllers to allow connection to diverse devices

- Introduce optimization and online learning to adapt during inference

- Future work to extend to ESnet traffic engineering protocols

SPA: shortest possible

Q: Q-learning
PG: policy-gradient

MAMRL: multi-agent meta learning



Thankyou for Listening

* Further work on adapting quickly to link
failures or network changes

* Exporting the ML models to
heterogeneous hardware for network
deployment

* Expanding to 5G and quantum networks

Contact: mkiran@Ilbl.gov
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