

Wafer-Scale Processors for HPC

Rob Schreiber ModSim, October 2021

The Memory & Interconnect "Walls"

A plausible solution:

The HPC-optimized Wafer-Scale Processor

Cerebras Wafer Scale Engine (WSE-2)

The Most Powerful Processor for Al

850,000 Al-optimized cores
46,225 mm² silicon
2.6 trillion transistors
40 Gigabytes of On-chip Memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cluster-scale acceleration on a single chip

	Cerebras WSE-2	A100	Cerebras Advantage		
Chip size	46,225 mm²	826 mm ²	56 X		
Cores	850,000	6912 + 432	123X		
On-chip memory	40 Gigabytes	40 Megabytes	1,000 X		
Memory bandwidth	20 Petabytes/sec	1555 Gigabytes/sec	12,733 X		
Fabric bandwidth	220 Petabits/sec	600 Gigabytes/sec	45,833 X		

Argonne National Lab is speeding up cancer research.

GlaxoSmithKline is exploring more ideas in less time.

"The Cerebras system will be critical in the development of next generation ML to uncover next set of more viable drug targets. The incredible power of the Cerebras architecture allows us to explore these new frontiers and decode the language of the cell."

- Kim Branson, Head of Al R&D, GlaxoSmithKline

AstraZeneca is training Al in 2 days instead of weeks.

+

What (else) can it do?

Fast Stencil-Code Computation on a Wafer-Scale Processor

Kamil Rocki^{*}, Dirk Van Essendelft[†], Ilya Sharapov^{*}, Robert Schreiber^{*}, Michael Morrison^{*}, Vladimir Kibardin^{*}, Andrey Portnoy^{*}, Jean Francois Dietiker^{†‡}, Madhava Syamlal[†] and Michael James^{*}

* Cerebras Systems Inc., Los Altos, California, USA Email: {kamil,michael}@cerebras.net

[†] National Energy Technology Laboratory, Morgantown, West Virginia, USA Email: dirk.vanessendelft@netl.doe.gov

[‡] Leidos Research Support Team, Pittsburgh, Pennsylvania, USA Email: jean.dietiker@netl.doe.gov

On the CS-1: 3D mesh > 2D machine

Sparse Linear Solver Building Blocks

Data communication, sparse Ax

Code, sparse Ax

Allreduce for 360,000 processor dot product

BiCGstab Performance

- Stream data to neighboring PEs
- No memory bandwidth limits
- 1.3 microsecond allreduce on 350,000 PEs
- 16-bit (32-bit add in dot products)
- Measured 0.86 PFLOP/s in lab on CS-1
 - 28 microseconds per iteration for a 600 × 595 × 1536 mesh on 602 × 595 compute fabric
 - Compared to 6 milliseconds on NETL's Joule supercomputer.
- 0.86 Pflops measured out of 2.43 = 35% of peak.

Performance vs Gridpoints

New HPCG results announced at SC20

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
1	RIKEN Center for Computational Science Japan	Supercomputer Fugaku — A64FX 48C 2.2GHz, Tofu Interconnect D	7,630,848	442.01	1	16.00	3.0%
2	DOE/SC/ORNL USA	Summit — IBM POWER9 22C 3.07GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta V100	2,414,592	148.60	2	2.925	1.5%
3	DOE/NNSA/LLNL USA	Sierra — IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta V100	1,572,480	94.64	3	1.796	1.4%
4	NVIDIA Corporation USA	Selene — AMD EPYC 7742 64C 2.25GHz, Mellanox HDR Infiniband, NVIDIA Tesla A100 40GB	555,520	63.46	5	1.623	2.0%
5	Forschungszentrum Juelich (FZJ) Germany	JUWELS Booster Module — AMD EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, NVIDIA Ampere A100	449,280	44.12	7	1.275	1.8%

Random small messages

- Small (single word) messages are the limiter for CPU/GPU
- Bisection bandwidth on the wafer
- **ISA-based communication** is key
- Over 200B cross-machine single word communications per second on 256K processors (512 X 512 fabric)
- Over 300 B on CS-2, larger fabric
- Further results coming

GEMM

- Single GEMM, matrices on wafer.
 N = 6,000 -- 30,000
- Use outer product formulation
- Fast broadcasts of rows and columns
- > 90 percent of peak for largest matrices.

FFT

- 454 MFLOPS per PE
- 3D --> Transposes
- Bisection bandwidth 1.74 TB/s in each direction
- Lower bound on time from BB: 4.8 msec
- Actual transposes: 8.4 msec
- Comparable to world's fastest results

+ Memory bandwidth and latency + Communication bandwidth and latency + Compute density, efficiency

- Small memory - bisection bandwidth $O(\sqrt{P})$

Wafer-scale: Not Just for Al

Scale out and scale up for DL

Modern models are needing more and more compute

Memory and compute requirements

Estimated time-to-train:

- NVIDIA Megatron-LM: trained on 512 V100 (32 DGX-2H) for about 10 days
- OpenAI GPT-3: trained on 1024 V100 (64 DGX-2H) for about 116 days

1 PFLOP-day is about 1 x DGX-2H or 1 x DGX-A100 busy for a day

Training Giant Models

Scale out to enormous scale has limits

- memory capacity per node insufficient for the model
- batch size

Scale both – a smaller ensemble of wafer-scale (scaled up) compute nodes

- hundreds of nodes > exaflops
- manageable replication, smaller batches, more efficient training
- less pressure on training data server

Weight streaming

- Do not store the whole model on the compute units
- Stream a layer at a time
- Decouple compute speed from memory capacity

Disaggregate Compute and Parameter Storage

Scale model size and training speed independently

Thank You

info@cerebras.net

