
© 2021 Cerebras Systems Inc. All Rights Reserved

Rob Schreiber
ModSim, October 2021

Wafer-Scale Processors for HPC

© 2021 Cerebras Systems Inc. All Rights Reserved

The Memory & Interconnect “Walls”

© 2021 Cerebras Systems Inc. All Rights Reserved

© 2021 Cerebras Systems Inc. All Rights Reserved

The HPC-optimized Wafer-
Scale Processor

A plausible solution:

© 2021 Cerebras Systems Inc. All Rights Reserved

Cerebras Wafer Scale Engine
(WSE-2)
The Most Powerful Processor for AI

850,000 AI-optimized cores
46,225 mm2 silicon
2.6 trillion transistors
40 Gigabytes of On-chip Memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cluster-scale acceleration on a single chip

© 2021 Cerebras Systems Inc. All Rights Reserved

Cerebras WSE-2 A100 Cerebras Advantage

Chip size 46,225 mm2 826 mm2 56 X

Cores 850,000 6912 + 432 123X

On-chip memory 40 Gigabytes 40 Megabytes 1,000 X

Memory bandwidth 20 Petabytes/sec 1555
Gigabytes/sec 12,733 X

Fabric bandwidth 220 Petabits/sec 600 Gigabytes/sec 45,833 X

© 2021 Cerebras Systems Inc. All Rights Reserved 7

© 2021 Cerebras Systems Inc. All Rights Reserved

What (else) can it do?

© 2021 Cerebras Systems Inc. All Rights Reserved

© 2021 Cerebras Systems Inc. All Rights Reserved

On the CS-1: 3D mesh > 2D machine

Fig. 4. Three dimensional problem mapping to two dimensional fabric
of processing elements

Listing 1. SpMV listing
/* CS-1 code that computes matrix-vector multiplication

* y = Ax with a seven-point stencil matrix A preconditioned

* to have ones on the main diagonal.

*/

/* Allocate storage for the various matrix and tensor elements.

* The z-dimensions and y-result are padded with zeros to avoid

* bounds checks in the code that follows.

*/

float16 xp[Z], xm[Z], yp[Z], ym[Z], zp[Z], zm[Z+1];

float16 x[Z+1], y[Z+2];

/* Allocate storage for FIFOs that store intermediate

* vector product components prior to reduction by summation.

* We used a FIFO depth of 20.

*/

float16 term[5][20];

/* Initialize DSRs with tensor descriptors for the access

* pattern. We use a consecutive access pattern with an

* outer dimension stride of zero to return the DSR to its

* initial position when the operation is complete.

*/

tensor xp_a = {.base=xp, .shape={1,Z }, .stride={0,1} };

tensor xm_a = {.base=xm, .shape={1,Z }, .stride={0,1} };

tensor yp_a = {.base=yp, .shape={1,Z }, .stride={0,1} };

tensor ym_a = {.base=ym, .shape={1,Z }, .stride={0,1} };

tensor zp_a = {.base=zp, .shape={1,Z }, .stride={0,1} };

tensor zm_a = {.base=zm, .shape={1,Z+1}, .stride={0,1} };

/* Initialize (more) DSRs with FIFO descriptors to store

* intermediate products. The FIFOs are configured to

* activate certain tasks automatically when data is

* pushed.

*/

fifo xp_fifo={.start=term[0], .end=term[1], .onpush=sumtask};

fifo xm_fifo={.start=term[1], .end=term[2], .onpush=sumtask};

fifo yp_fifo={.start=term[2], .end=term[3], .onpush=sumtask};

fifo ym_fifo={.start=term[3], .end=term[4], .onpush=sumtask};

fifo zp_fifo={.start=term[4], .end=term[5], .onpush=sumtask};

/* Initialize (yet more) DSRs with descriptors that all

* alias the same output y vector. During the course of

* execution, they will advance asynchronously. Notice:

* accumulators for zp and zm contributions are shifted by one.

*/

tensor xp_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor xm_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor yp_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor ym_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

tensor zp_acc = {.base=y+2, .shape={1,Z}, .stride={0,1} };

tensor zm_acc = {.base=y+0, .shape={1,Z}, .stride={0,1} };

tensor c_acc = {.base=y+1, .shape={1,Z}, .stride={0,1} };

/* Initialize DSRs to traverse the local x vector.

* We use two descriptors because we make two traversals

* from separate threads concurrently.

*/

tensor x0 = {.base=x, .shape={1,Z+1}, .stride={0,1} };

tensor x1 = {.base=x, .shape={1,Z }, .stride={0,1} };

/* Hardware will schedule a task when it is activated

* and not blocked. Initially we block SPMV completion

* tasks. Special instructions block(), unblock(),

* activate() and machine events such as completion

* of a background thread can manipulate these task states.

*/

taskset sched_block = { xdone, ydone, cdone, xydone, xycdone };

taskset sched_activate = { };

task spmv {

/* Initialize DSRs as fabric I/O descriptors.

* Instructions that use these descriptors are run by the

* hardware as background threads in the specified thread slot.

* When the operation is completed it can unblock or activate a task.

* Reload the DSRs because their use in threads modifies them.

*/

fabric xp_rx={.thr=0, .len=Z, .trig=xdone, .act=ACTIVATE};

fabric xm_rx={.thr=1, .len=Z, .trig=xdone, .act=UNBLOCK };

fabric yp_rx={.thr=2, .len=Z, .trig=ydone, .act=ACTIVATE};

fabric ym_rx={.thr=3, .len=Z, .trig=ydone, .act=UNBLOCK };

fabric zp_rx={.thr=4, .len=Z, .trig=cdone, .act=ACTIVATE};

fabric c_tx ={.thr=5, .len=Z};

fabric c_rx ={.thr=6, .len=Z, .trig=cdone, .act=UNBLOCK};

/* Finally, we see the first executable code. It is often

* the case that most of the code specifies DSR setup and

* task dependencies; the executable code itself is

* just the arithmetic that operates over the above structure.

*/

/* Launch thread to send local vector to four neighbors

* and mirror to ourselves. */

c_tx[] = x1[];

/* Initialize the output vector with x*zm.

* This runs in the main thread and completes

* before any subsequent lines are executed.

*/

zm_acc[] = x0[] * zm_a[];

/* Launch five threads write to FIFOs of vector length Z. */

xp_fifo[] = xp_rx[] * xp_a[];

xm_fifo[] = xm_rx[] * xm_a[];

yp_fifo[] = yp_rx[] * yp_a[];

ym_fifo[] = ym_rx[] * ym_a[];

zp_fifo[] = zp_rx[] * zp_a[];

/* Launch a thread to handle the main diagonal.

* Because the diagonal is all ones there is

* no FIFO and no multiplication.

*/

c_acc[] = c_acc[] + c_rx[];

}

/* The FIFO write threads run asynchronously.

* When they push data into a FIFO, they also activate

* a summation task. The summation task reads all available

* data from the FIFOs sequentially, adding the values to

© 2021 Cerebras Systems Inc. All Rights Reserved

Sparse Linear Solver Building Blocks

© 2021 Cerebras Systems Inc. All Rights Reserved

Data communication, sparse Ax

12

xp_fifo

x-1 x+1

y+1

y-1

x-1 x+1

y+1

y-1

thread 0

thread 1

spmvtask

X

Fabric
input

Fabric
output

+

+

+

+

+

sumtask
xp

xm

yp

ym

zp

zm

uv

In
-m

em
or

y
in

pu
ts

In-memory result

FIFOs
term[0]

term[1]

term[2]

term[3]

term[4]

v1

v0

Router

xp_a

xp_rx xp_fifo xp_acc

xm_fifo xm_acc

yp_fifo

ym_fifo

zp_fifo

yp_acc

ym_acc

zp_acc

thread 2

thread 3

thread 4

thread 5

xm_a

yp_a

ym_a

zp_a

c_accc_rx

zm_a

X

X

X

X

+

xm_fifo

yp_fifo

ym_fifo

zp_fifo

xm_rx

yp_rx

ym_rx

zp_rx

zm_acc
X

(write) (read)

(write) (read)

(write) (read)

(write) (read)

(write) (read)

c_tx

Fig. 5. Implementation of SpMV. Shaded regions represent memory objects, annotated arrows are tensor descriptors, and white boxes are tasks
that perform computations. The diagram uses the names of objects in the code of Listing 1.

to continue to push into them.
The tensor descriptors of the add inputs track the total

number of elements pulled from each FIFO, activating a
completion task (not shown) for each of the five vector
adds when they are finished. These completion tasks
use a barrier technique to detect when all six of the
vector adds have completed so that they can indicate
the completion of the SpMV operation.

The six add threads add to elements of the result
vector. The additions occur one at a time (or two at
a time in and SIMD operation). They occur in a non-
deterministic order. But there is no danger of a data race,
and no locks need be acquired, as the hardware handles
the interleaving, working on only one thread at a time.
Because floating point add is not associative, the round-
ing errors in this implementation are not deterministic.
(And addition is also non-deterministic when on a shared
memory machine a shared accumulator is protected by
a lock.) But we use 32-bit adds, so they are negligible.

2) SpMV (2D): We sketch an implementation a 2D
version of the SpMV computation that operates over
a 9-point stencil. The 2D implementation runs on our
simulators but we have not measured performance on a
laboratory machine.

For the 2D problem we map a rectangular region of

Fig. 6. Tessellation routing pattern for SpMV: a single core pushes its
content into adjacent cores’ fabric router using a single communication
channel. Messages from the four neighbors arrive on four distinct
channels and are processed by corresponding microthreads. This allows
us to achieve high fabric utilization due to the fact that we can send
the data in 4 directions in a single cycle. WSE allows the fabric to be
dynamically reconfigured. Such adaptive topology plays a significant
role in offloading routing logic from cores, which can be used primarily
for computation.

x-y grid space to each core. For each meshpoint that is
stored in a core, the nine corresponding matrix weights

© 2021 Cerebras Systems Inc. All Rights Reserved

Code, sparse Ax

13

×
Thread 1

×
Thread 2

×
Thread 3

×
Thread 4

×
Thread 5

×
Thread 6

Σ +
Thread 7

X—

Weights

Y—

Weights

Z—
Weights

X＋
Weights

Y＋
Weights

Z＋
Weights

Activations

Thread 8

Result

X— X＋C

Y＋

Y—

Σ +

Σ +

Σ +

Σ +

Σ +

FIFO

FIFO

FIFO

FIFO

FIFO

Processor Core

Router

Addressable
Memory Thread Register Fabric Colors

© 2021 Cerebras Systems Inc. All Rights Reserved

Allreduce for 360,000 processor dot product

14

© 2021 Cerebras Systems Inc. All Rights Reserved

• Stream data to neighboring PEs
• No memory bandwidth limits
• 1.3 microsecond allreduce on 350,000 PEs
• 16-bit (32-bit add in dot products)
• Measured 0.86 PFLOP/s in lab on CS-1

• 28 microseconds per iteration for a 600 ×
595 × 1536 mesh on 602 × 595 compute
fabric

• Compared to 6 milliseconds on NETL’s Joule
supercomputer.

• 0.86 Pflops measured out of 2.43
= 35% of peak.

BiCGstab Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Performance vs Gridpoints

PFLOPs

Gridpoints (Millions)

© 2021 Cerebras Systems Inc. All Rights Reserved

© 2021 Cerebras Systems Inc. All Rights Reserved

• Small (single word) messages are the limiter for CPU/GPU
• Bisection bandwidth on the wafer
• ISA-based communication is key
• Over 200B cross-machine single word communications per second

on 256K processors (512 X 512 fabric)
• Over 300 B on CS-2, larger fabric
• Further results coming

Random small messages

© 2021 Cerebras Systems Inc. All Rights Reserved

• Single GEMM, matrices on wafer.
N = 6,000 -- 30,000

• Use outer product formulation
• Fast broadcasts of rows and columns
• > 90 percent of peak for largest matrices.

GEMM

6 ms vs 28 us -------
--->

© 2021 Cerebras Systems Inc. All Rights Reserved

• 454 MFLOPS per PE
• 3D --> Transposes
• Bisection bandwidth 1.74 TB/s in each direction
• Lower bound on time from BB: 4.8 msec
• Actual transposes: 8.4 msec
• Comparable to world’s fastest results

FFT

© 2021 Cerebras Systems Inc. All Rights Reserved

+ Memory bandwidth and latency
+ Communication bandwidth and latency

+ Compute density, efficiency

- Small memory
- bisection bandwidth 𝑶(𝑷)

Life on a wafer

© 2021 Cerebras Systems Inc. All Rights Reserved

Wafer-scale: Not Just for AI

© 2021 Cerebras Systems Inc. All Rights Reserved

Scale out and scale up for DL

© 2021 Cerebras Systems Inc. All Rights Reserved 23

Modern models are needing more and more compute

Estimated time-to-train:

• NVIDIA Megatron-LM:
trained on 512 V100 (32 DGX-2H)
for about 10 days

• OpenAI GPT-3:
trained on 1024 V100 (64 DGX-2H)
for about 116 days

1 PFLOP-day is about
1 x DGX-2H or 1 x DGX-A100
busy for a day

© 2021 Cerebras Systems Inc. All Rights Reserved

Scale out to enormous scale has limits
• memory capacity per node insufficient for the model
• batch size

Scale both – a smaller ensemble of wafer-scale (scaled up) compute nodes
• hundreds of nodes > exaflops
• manageable replication, smaller batches, more efficient training
• less pressure on training data server

Weight streaming
• Do not store the whole model on the compute units
• Stream a layer at a time
• Decouple compute speed from memory capacity

Training Giant Models

© 2021 Cerebras Systems Inc. All Rights Reserved

Scale model size and training speed independently

Disaggregate Compute and Parameter Storage

CS-2 Compute

External
Model

Memory

Weights

Gradients

Training
Database

Samples

Labels
Activations kept local Streamed 1

layer at a time

© 2021 Cerebras Systems Inc. All Rights Reserved

info@cerebras.net

Thank You

