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Verification Methodologies Are Severely Strained
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• Unpredictable, iterative loop during timing closure and  
system integration/test phase

• Poor partitioning decisions at the front end of the 
process are impossible to overcome during the design

• Functional verification is strained by even today’s 
designs; how to verify multi-discipline systems with 
many billions of gates?

• Even though software is a key, growing system 
component it is only partially included in hardware 
verification phases due to insufficient simulation speed

• Interaction with outside world through sensors and 
actuators is rarely an integral part of the flow

Source: Mentor Graphics, 2009



Enabling Linear Scaling / Hyperscaling of Digital Simulation

• Chip development timelines are 
bottlenecked by functional 
verification, where simulation 
speed is center-stage

• Simulation speed grew with 
Moore driven platform 
performance to ~ 1K cps 

• Post-Moore, the architectural 
direction is multicore/cloud, but 
modern simulation algorithms are 
not designed  take advantage of 
distributed computational fabric
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Convergence of Technologies to Drive Next-Gen Simulation Advances

RE
DU

CE
D 

O
RD

ER
 M

O
DE

LS

DISTRIBUTION A. Approved for public release: distribution unlimited

CLOUD
SCALING

• Combine limitless and elastic compute and storage available on the 
cloud with one or more of the following innovations:  

• Simulation engine novel algorithms
• Parallel partitioning schemes
• High-performance-compute (HPC) architectures and 

programmable cloud based FPGA fabric
• ML-driven simulation partitioning

Novel Algorithms

1000X

Parallelization

Cloud FPGA

ML Partitioning

Source: http://users.ece.utexas.edu/~valvano/Volume1/
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• Simulation physics limits reached decades ago and rely on Moore’s law for speedups
• Parallel simulation has not been re-visited since emergence of the cloud computing
• Emergence of Machine Learning has not been employed to drive creation of faster models
• Need to re-think simulation in light of advances in ILA, ML, HPCs, and Cloud

Abstraction + Reduced Order Models + HPC + Cloud Scaling
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• Instruction level simulation is fast and the accuracy is 
adequate for numerous SoC system simulation use cases

• This approach treats bus-based peripherals (IP) 
as if they were processors

• Memory mapped communication protocols are 
modeled as “machine instructions”

• Performance gain of 100X have been 
demonstrated at the block level

• Raise the abstraction of the entire SoC to the 
level where instruction based simulation  benefits 
can be realized

Raising Abstraction to Instruction Level for ALL IP Blocks

LOGIC SIMULATION - accurate on clock ticks

RTL SIMULATION - accurate on cycle boundaries

ILA SIMULATION - accurate on instruction boundaries
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HPC to Exploit Speculative Parallelism

• ASIC verification relies on single-threaded simulation algorithms (100 cps) 
and/or high-cost, inflexible, dedicated hardware emulators (1.5M cps)

• Concept of speculative parallelism dates back to 1987, but since then the 
computational fabric and opportunities have substantially evolved (Cloud, 
eFPGA, GPUs, etc.)

Standalone 
FPGA 

Accelerator

Scaling Across 
Array of FPGA 

Accelerators

Standalone 
ASIC 

Accelerator

Scaling Across 
Array of ASIC 

Accelerators

Prototype Forward-looking Development

• Single-FPGA-based digital simulation accelerators have been prototyped, 
but have not demonstrated scaling off-chip or ASIC implementation

• Can we do better and achieve smooth system-level scaling?

DISTRIBUTION A. Approved for public release: distribution unlimited

Source: R. Fujimoto, Georgia Institute of Technology 
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Thread-Parallel on 40-Thread 8-core CPU
MIT Chronos Accelerator, Single FPGA

Xeon (8 cores)

15X
“Speculative Parallelism”

(prototype based on academic simulator)

Can these HPCs be 
further sped up as 

ASICs and arrayed?

HPC FPGA

ASIC

Source: MIT CSAIL
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Auto-generation of Reduced Order Models

Can we drastically improve simulation performance in digital and mixed-signal SoCs by selectively 
substituting complex, high-fidelity circuit models with auto-generated, simplified, approximate surrogates?
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Rationale

• Deploying state-of-the-art artificial 
intelligence techniques as the 
fundamental basis for generating 
simplified SoC models

• Develop machine learning models that 
can collapse/expand into different levels 
of hierarchy & have an awareness of their 
role within a larger system

• Make intelligent trade-offs between 
model accuracy and speed to achieve 
meaningful simulation
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CLOUD
SCALING

RE
DU

CE
D 

O
RD

ER
 M

O
DE

LS

10



System* Modeling

Current Situation

• Any system can be viewed as consisting of two 
partitions: Original Content or Design Under Test 
(DUT) and pre-existing design modules

• Non-DUT models consume significant compute 
resources and time to negatively impact overall 
system simulation speed

• Models that represent system sub-components can 
be slow, highly complex functions 

• Models map input/output with maximum accuracy 
supported by the simulator

• Comprehensive full system simulation is slow, and 
often impractical

What We Would Like

• Non-DUT components consume a significantly 
smaller portion of total simulation speed

• Faster simulation models that trade-off an 
acceptable loss of accuracy for significant speed-up 

• Comprehensive full system simulation is fast

• Simulation speed that drives greater acceptance and 
utilization of full system simulation that, in turn, 
increases fault detection, provides earlier insights 
into system designs, and mitigates risk

*System in this context represents a complex of capabilities realized at chip, board or distributed compute/control realizations

DISTRIBUTION A. Approved for public release: distribution unlimited
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AI/Machine Learning

Current Situation

• Neural network models that are excellent 
function approximators

• Models exist in isolation – they have no 
awareness of what they represent or how 
they exist in a larger system context

• Models are static and there is no ability to 
functionally aggregate them

What We Would Like

• Meta-aware ML models that incorporate 
knowledge of domain and data semantics 
and understand their role in the larger 
system context

• Composable ML models that can 
collapse/expand into different levels of 
system hierarchy while maintaining 
acceptable accuracy levels for relevant 
input/output pairings

DISTRIBUTION A. Approved for public release: distribution unlimited
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Objectives

1) Speed up simulation of microelectronic systems
• This will be achieved by intelligently generating less-accurate, 

faster surrogate models of non-DUT components
• These models need to be able to achieve user-required target 

accuracy while still providing drastic speed-up

2) Develop novel 3rd-wave AI techniques that address 
drawbacks to 2nd wave AI solutions
• This will be achieved by creating AI surrogates that are: 

 Composable: Able to collapse/expand into different levels of 
hierarchy while maintaining acceptable accuracy and 
input/output coverage for all sub-components

 Meta-aware: Able to maintain an awareness of how their 
representative real-world component exists and interacts 
within the overall system structure

DISTRIBUTION A. Approved for public release: distribution unlimited
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CU2

CU3 CU4

CU1

Chip = DUT, CPU, Mem, I/O, DIP
Software = drivers
Surrogate candidate: IP

Controller = Chip, I/O, AC
Software = drivers, OS, NM
Surrogate candidate: AC

System = Controllers, Network
Software = drivers, OS, NM, application
Surrogate candidate: CU

DUT = Block in chip context
IP = Digital IP
Model = RTL

DUT = Component in controller context
AC = Analog Component
Model = SPICE

DUT = Controller in system context
CU = Control Unit
Model = Host Code or Simulink
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Does the DUT work correctly in its operational context?
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CU2’
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CU1’
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System = Controllers, Network
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Surrogate candidate: CU
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IP = Digital IP
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DUT = Component in controller context
AC = Analog Component
Model = SPICE
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CU = Control Unit
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Individual Surrogate Strategy(each surrogate is individually trained)
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Julia Computing and QuEra Computing
An ML-accelerated Mixed Signal Simulation Framework

Summary: Extending Julia’s existing machine learning technology to 
cover analog/mixed-signal circuits

● JuliaSim: Unified simulation stack from (multi-)physics to digital

● JuliaSPICE: SPICE-compatible frontend for Analog Simulation

● Neural Surrogates provide allow trading small amounts of 
accuracy for high performance gains

● Fully Differentiable (unlike SOA simulators)
● Suitable for white-box surrogatization
● Enables other use cases also, e.g. gradient-based design 

optimization

● Model coverage: Basic SPICE models, Verilog-A import
● Support for BSIM-CMG (ASAP7 7nm PDK) Automatic creation of CTESN

and IIR-CTELM surrogates

A modern, fully-differentiable, SPICE-compatible analog simulator using Ditto surrogates
DISTRIBUTION A. Approved for public release: distribution unlimited
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University of Massachusetts, Amherst and Lockheed Martin
MOKA - Modular Know ledgeable AI

Summary: A design-centric approach that hierarchically converts circuit structures into neural networks

• First, Programming Neural Networks (PNNs) are generated without training, within seconds, having full accuracy, and 
are usable as a reliably accurate simulation skeleton for any size IC

• Then, select PNNs can be converted to Masked Neural Networks (MNNs) via a method where weights and masks are 
learned simultaneously, leading to great speedup of simulation and higher accuracy; requires training data

• The resulting hybrid neural networks combine accurate PNNs with fast MNNs in strategic places – achieving user-
defined trade-offs in modularity, speed, accuracy, and training time

A modular Ditto approach allowing for trade-offs in speed, accuracy, and training time
DISTRIBUTION A. Approved for public release: distribution unlimited
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Aurora Flight Sciences and MIT
End-to-End Learning of Differentiable Surrogates 
for M ixed-Signal PCB Simulation

Summary: Applying a CPU-directed surrogate strategy to AMS

• Leverages Hierarchical Long Short-Term Memory networks 
(LSTMs), differentiable and good for processing not only single 
data points (such as images), but also entire sequences of data 
(such as speech or video). 

• Graph Neural Network (GNN) approach combines graph 
structures and LSTMs for learning meta-cognitive 
representations of systems and their input/output 
environments.

• Bayesian Optimization further efficiently searches large 
configuration spaces with a small number of samples for 
automatic hierarchical multiscale composition of individual 
LSTM surrogates into larger systems.

• Benchmarked using real aerospace designs
Aurora Ditto Modeling Framework

Differentiable surrogates allowing for optimization of systems with complex time-dependent behavior

DISTRIBUTION A. Approved for public release: distribution unlimited
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SRI
System Understanding for Composable Cognitive Emulation 
of Electronic Devices (SUCCEED)

Summary: A traffic-centric approach that prunes the model 
around portions impacted by tests and assertions

• Neural networks train on novel inputs by using Deep Adaptive 
Semantic Logic (DASL) to back-propagate loss based on failure 
to satisfy formal assertions 

• NNs then not only satisfy known input/output test vectors but 
also generalize beyond the small test vector set that may be 
available

• Training on random vectors without knowledge of correct 
outputs via the use of behavioral constraints obviates the need 
for use of manually-specified datasets and production of test 
data from slow simulators, speeding up the training process 
considerably

SRI Ditto Modeling Framework

Surrogates which train quickly based on random input vectors rather than hand-selected datasets

DISTRIBUTION A. Approved for public release: distribution unlimited
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BAE Systems, AIMdyn, Inc., and Synopsys, Inc. 
FACSIMILE: Fast ACcurate Surrogate Implementation, 
Modeling, and Integrated Learning Environment

Summary: Leverage knowledge of distributed systems to 
learn the dynamics and operating conditions of 
input/output traffic

• Data-driven synthesis, aggregation, and adaptation of 
surrogate models using Koopman operator

• Meta-cognition of Koopman surrogate models via 
discovered representations of operating conditions

• Extends model-based virtual prototyping 

• Training data “topics” discover operating conditions such 
as acceleration or braking automatically

• Results show feasibility of using metacognition of distinct 
operating conditions to guide selection of adequate 
models

BAE Ditto Modeling Framework

DISTRIBUTION A. Approved for public release: distribution unlimited

Metacognitive surrogates apply novel math for fast, adaptive models learned with sparse data
21
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Summary: Multiple Approaches Need to be Combined
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Source: http://users.ece.utexas.edu/~valvano/Volume1/

Higher Abstraction

1000X

Speculative Parallelism

Reduced Order Modeling

Cloud Scaling/Hyperscaling
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