
Fast Trace-Driven Simulation of Programmable
Heterogeneous Accelerators

Subhankar Pal^*, Kuba Kaszyk†, Siying Feng*, Björn Franke†, Murray
Cole†, Michael O’Boyle†, Trevor Mudge*, Ronald Dreslinski*

*University of Michigan, USA †University of Edinburgh, UK

^Work done when author was a PhD student at Michigan. Author is now with IBM Research.

10/7/21 ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

Programmable Accelerators and the Need
for Fast Simulation
• End of Dennard scaling and Moore’s law spurred

heterogeneous architectures
• Fixed function accelerators are the holy grail for the best

performance and perf/Watt, but…
• Programmable accelerators e.g. coarse-grained

reconfigurable architectures (CGRAs) gaining popularity

• Early-stage evaluation critical to develop new
architectures

• Cycle-level architectural simulators often 3-5 orders of
magnitude slower than silicon

• Trace-driven simulation widely adopted to run much faster
simulations at the cost of some accuracy

• Shift of research from accelerating compute-bound
algorithms to memory-bound ones

• We exploit this insight and thus retain fidelity for memory
operations while squeezing speedup out of approximating
simulation of compute operations

[1] Takamaeda-Yamazaki et al., “An FPGA-based scalable simulation accelerator for tile architectures”, ACM SIGARCH Computer Architecture News, December 2011

Functional Sim

Target
FPGA

Emulation

Chip

Arch.
Sim

Resource requirement (time, cost, etc.)

Ac
cu

ra
cy

 o
f

m
ea

su
re

m
en

t
(t

im
e,

 p
ow

er
)

Adapted from [1]

Trade-Offs between Accuracy and Resource Requirement

Flexibility / Programmability

Pe
rf

. /
 E

ffi
ci

en
cy Fixed-fn

Accel

CPU
GPU

Fine-graine
d

Coarse-grai
ned

Trade-Offs in Modern Computing Paradigms

… … …
…

……

Scratchpad
Example CGRA

PE Array

10/7/21 2ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

HetSim – Features in a Nutshell
• Traces that captures additional

information to improve flexibility
• Tokens defining inter-PE

communication
• Annotations of dependent memory

addresses
• Virtual program counters, to support

PC-based prefetching

• Support for hardware “primitives”
that are common to modern
heterogeneous systems

• Extendibility to support user-defined
primitives

• High-level “specification” file that
models the behavior of primitives,
filtration criteria for instructions, etc.

• Scalable to heterogeneous targets w/
core counts of the order of 1,000

10/7/21 3

Examples of supported primitives

Example trace file

Example user specification file

Trade-OffSim.
Speed

Sim.
Accuracy

- Operation coarsening
- Selection of address space
- Instruction allow/denylisting

ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

Compiler Plugin Generation

Emulator Verification

Trace Replay

Trace Generation

Proposed Approach

• Compiler Plugin Generation. generator script parses the user specification file and generates a compiler pass and tracing library
specific to the target architecture

• Emulator Verification. user writes a multithreaded application for the target with calls to primitives, and verifies the
functionality by running on a native machine

• Trace Generation. user generates instrumented version of application using the compiler pass and tracing library generated by
HetSim, and runs it through the native machine to generate trace files

• Trace Replay. user runs the traces through the gem5 model to obtain performance and power estimates at faster timescales

10/7/21 4

Implement
arch model in
and
hook up TREs

{;}
JSON

Modify user
specification

for target

Write/modify
app using
primitives CPP

Verify
functionality

of app

Generate
compiler plugin
and tracing lib

Generate
traces using

plugin TRCTRCTRC

Run on
TRE-enabled
model

Gather statistics
(perf, power, etc.)

Typical usage flow with a new target architecture

ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

Evaluation with Detailed Model and Chip
• Evaluation with architecture

called Transmuter [2], a
reconfigurable accelerator

• Two hardware configurations: shared
cache and private cache

• Three workloads: GeMM, GeMV, and
SpMM

• Average speedup of 5.0× over
detailed gem5 model, with timing
and power deviations of 15.1% and
10.9% on average

• Validation against SpMM
accelerator prototype chip

• Timing deviation: 32% and 16% for
multiply and merge phases

10/7/21 5

Speedup and deviations over detailed (GeMM)

$ $

Memory

$ $ $ $ $ $ $ $

$ $

Memory

$ $ $ $ $ $ $ $

Local control processor
General purpose processing element

Crossbar

Overview of Transmuter

M0

Crossbar

L0$/
SPM

L0$/
SPM

L0$/
SPM

L0$/
SPM

PE M4F PE PEPE

40 nm SpMM chip design (Tile View)

Deviation in Performance Estimation w.r.t. Chip

[2] Pal et al., “Transmuter: Bridging the Efficiency Gap using Memory and Dataflow Reconfiguration”, ACM/IEEE PACT, October 2020

ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

HetSim is Available on GitHub!

For details and preview of ongoing work, please join me in the breakout room!

10/7/21 6

https://github.com/umich-cadre/hetsim-gem5

https://github.com/umich-cadre/hetsim-gem5/tree/master/demos/iiswc-20/tutorial.ipynb

ModSim 2021: Workshop on Modeling & Simulation of Systems and Applications

https://github.com/umich-cadre/hetsim-gem5
https://github.com/umich-cadre/hetsim-gem5/tree/master/demos/iiswc-20/tutorial.ipynb

