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Introduction
• Design space exploration: How to evaluate the performance of an 

application on many architecture configurations?
• Use simpler surrogate applications
• Use statistical simulation?

• Some of program intervals may not be sensitive to the 
architecture changes, and re-running them on each architecture 
may be wasteful

• Identify important program intervals for performance modeling
• Learn a mapping from interval performance to application 

performance
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Statistical simulation
Statistical simulation speeds up simulation by only 

performing detailed simulation on small portions of a 
program and extrapolating the results for a whole-
program estimate (1-2)

SimPoint divides a program into intervals and groups 
intervals together based on their behavior similarity 

• Measured with basic block features (that is, if two 
intervals involve execution of many of the same basic 
blocks then they are similar)

Detailed simulation is performed on a representative 
interval of each cluster, and fast forwarding is used 
between these intervals.

Combine measurements on representative intervals to 
get whole program estimate
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Design space exploration
• A typical application of statistical 

simulation would be to estimate program 
performance over many configurations

• For each configuration, run the small 
number of intervals, and use a weighted 
sum to estimate performance

• However, this may cause some 
difficulties:
• Since the intervals in a cluster are only 

similar, and not equal, it’s not clear that a 
simple weighted sum is the most accurate 
model

• Some intervals may not be sensitive to the 
design space variables
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Design-space aware statistical 
simulation

• Run SimPoint to obtain a set of n phases and representative intervals 
p1, …, pn.

• Choose m design settings v1, …, vm (a small portion of overall space)

• Obtain performance r of the n intervals on each of m configurations.
• Evaluate r(i, vk) for i=1…n and k=1…m

• For each interval, find correlation c(i) between [ r(i, v1), r(i, v2) ,…, r(i, 
vm) ] and [ v1, v2, ..., vm ]

• Keep the top k intervals in terms of correlation, discarding the rest. 
• Represented by k indices g1, g2, ..., gk

• Run the application q at the m configurations, obtaining performance 
measurements r(q, v1), r(q,v2), ..., r(q,vm)

• Learn a mapping f : Rk  R from the interval performances to 
application performances (e.g. using ML)
• for j=1…m , f( r(g1, vj), r(g2,vj), … , r(gk, vj) ) = r(q,vj)

• Prediction: Given a new configuration v, run the top k intervals to get 
performance result, then plug into ML model.
• Evaluate r(g1,v), r(g2,v), … r(gk,v)
• Estimate runtime as r(q,v) ~ f(r(g1,v), r(g2,v), … r(gk,v))
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• Run SimPoint to obtain a set of 
phases

• Correlate phase performance 
profiles with design parameters

• Toss out uncorrelated phases
• Among ”interesting” phases, build a 

model of phase  application 
performance



Application to the SPEC benchmarks
Evaluation of our methodology 

to predict CPI in SPEC 
programs

• Evaluated ground truth of 
benchmark runtimes.

• Apply SimPoint to get a 
baseline prediction estimate

• Next steps are to apply 
DSA-SimPoint, and compare 
results.

• Later, consider DL-based 
clustering approaches, 
based on SimNet
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