
Design space-aware statistical
simulation with machine learning

10/7/2021

Thomas Flynn

Introduction
• Design space exploration: How to evaluate the performance of an

application on many architecture configurations?
• Use simpler surrogate applications
• Use statistical simulation?

• Some of program intervals may not be sensitive to the
architecture changes, and re-running them on each architecture
may be wasteful

• Identify important program intervals for performance modeling
• Learn a mapping from interval performance to application

performance

2

Statistical simulation
Statistical simulation speeds up simulation by only

performing detailed simulation on small portions of a
program and extrapolating the results for a whole-
program estimate (1-2)

SimPoint divides a program into intervals and groups
intervals together based on their behavior similarity

• Measured with basic block features (that is, if two
intervals involve execution of many of the same basic
blocks then they are similar)

Detailed simulation is performed on a representative
interval of each cluster, and fast forwarding is used
between these intervals.

Combine measurements on representative intervals to
get whole program estimate

1. T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss for effective trace sampling of superscalar processors,” in Proceedings International
Conference on Computer Design. VLSI in Computers and Processors, pp. 468–477. (1996)

2. Hamerly, G., Perelman, E., Lau, J., & Calder, B. SimPoint 3.0: Faster and More Flexible Program Phase Analysis. J. Instr. Level Parallelism, 7. (2005).

Design space exploration
• A typical application of statistical

simulation would be to estimate program
performance over many configurations

• For each configuration, run the small
number of intervals, and use a weighted
sum to estimate performance

• However, this may cause some
difficulties:
• Since the intervals in a cluster are only

similar, and not equal, it’s not clear that a
simple weighted sum is the most accurate
model

• Some intervals may not be sensitive to the
design space variables

4

Design-space aware statistical
simulation

• Run SimPoint to obtain a set of n phases and representative intervals
p1, …, pn.

• Choose m design settings v1, …, vm (a small portion of overall space)

• Obtain performance r of the n intervals on each of m configurations.
• Evaluate r(i, vk) for i=1…n and k=1…m

• For each interval, find correlation c(i) between [r(i, v1), r(i, v2) ,…, r(i,
vm)] and [v1, v2, ..., vm]

• Keep the top k intervals in terms of correlation, discarding the rest.
• Represented by k indices g1, g2, ..., gk

• Run the application q at the m configurations, obtaining performance
measurements r(q, v1), r(q,v2), ..., r(q,vm)

• Learn a mapping f : Rk  R from the interval performances to
application performances (e.g. using ML)
• for j=1…m , f(r(g1, vj), r(g2,vj), … , r(gk, vj)) = r(q,vj)

• Prediction: Given a new configuration v, run the top k intervals to get
performance result, then plug into ML model.
• Evaluate r(g1,v), r(g2,v), … r(gk,v)
• Estimate runtime as r(q,v) ~ f(r(g1,v), r(g2,v), … r(gk,v))

5

• Run SimPoint to obtain a set of
phases

• Correlate phase performance
profiles with design parameters

• Toss out uncorrelated phases
• Among ”interesting” phases, build a

model of phase  application
performance

Application to the SPEC benchmarks
Evaluation of our methodology

to predict CPI in SPEC
programs

• Evaluated ground truth of
benchmark runtimes.

• Apply SimPoint to get a
baseline prediction estimate

• Next steps are to apply
DSA-SimPoint, and compare
results.

• Later, consider DL-based
clustering approaches,
based on SimNet

6

