

Design space-aware statistical simulation with machine learning

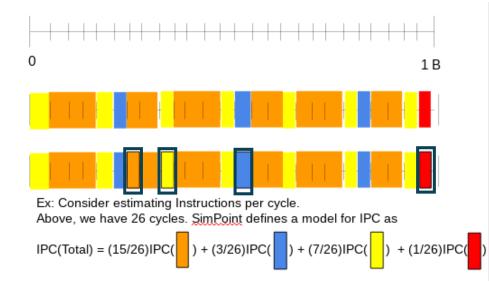
Thomas Flynn

10/7/2021

📕 🖸 📊 @BrookhavenLab

Introduction

- Design space exploration: How to evaluate the performance of an application on many architecture configurations?
 - Use simpler surrogate applications
 - Use statistical simulation?
- Some of program intervals may not be sensitive to the architecture changes, and re-running them on each architecture may be wasteful
- Identify important program intervals for performance modeling
- Learn a mapping from interval performance to application performance

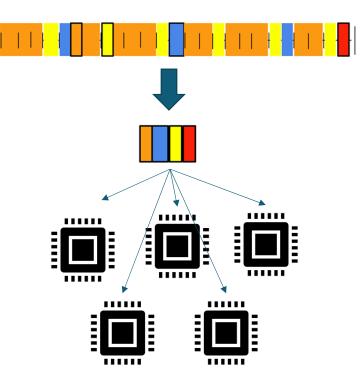

Statistical simulation

Statistical simulation speeds up simulation by only performing detailed simulation on small portions of a program and extrapolating the results for a wholeprogram estimate (1-2)

SimPoint divides a program into intervals and groups intervals together based on their behavior similarity

- Measured with basic block features (that is, if two intervals involve execution of many of the same basic blocks then they are similar)
- Detailed simulation is performed on a representative interval of each cluster, and fast forwarding is used between these intervals.

Combine measurements on representative intervals to get whole program estimate



- 1. T. M. Conte, M. A. Hirsch, and K. N. Menezes, "Reducing state loss for effective trace sampling of superscalar processors," in Proceedings International Conference on Computer Design. VLSI in Computers and Processors, pp. 468–477. (1996)
- 2. Hamerly, G., Perelman, E., Lau, J., & Calder, B. SimPoint 3.0: Faster and More Flexible Program Phase Analysis. J. Instr. Level Parallelism, 7. (2005).

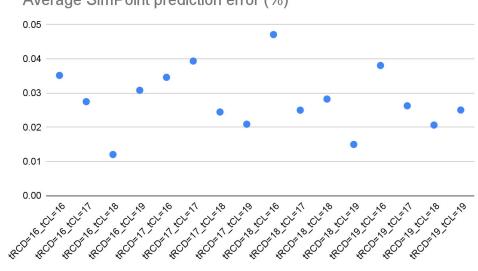
Design space exploration

- A typical application of statistical simulation would be to estimate program performance over many configurations
- For each configuration, run the small number of intervals, and use a weighted sum to estimate performance
- However, this may cause some difficulties:
 - Since the intervals in a cluster are only similar, and not equal, it's not clear that a simple weighted sum is the most accurate model
 - Some intervals may not be sensitive to the design space variables

4

Design-space aware statistical simulation

- Run SimPoint to obtain a set of phases
- Correlate phase performance
 profiles with design parameters
- Toss out uncorrelated phases
- Among "interesting" phases, build a model of phase → application performance


- Run SimPoint to obtain a set of n phases and representative intervals $p_1,\,...,\,p_n$
- Choose m design settings v₁, ..., v_m (a small portion of overall space)
- Obtain performance **r** of the **n** intervals on each of **m** configurations.
 - Evaluate r(i, v_k) for i=1...n and k=1...m
- For each interval, find correlation c(i) between [$r(i,\,v_1),\,r(i,\,v_2)$,..., $r(i,\,v_m)$] and [$v_1,\,v_2,\,...,\,v_m$]
- Keep the top k intervals in terms of correlation, discarding the rest.
 - Represented by k indices **g**₁, **g**₂, ..., **g**_k
- Run the application q at the m configurations, obtaining performance measurements r(q, v₁), r(q,v₂), ..., r(q,v_m)
- Learn a mapping $f : \mathbb{R}^k \rightarrow \mathbb{R}$ from the interval performances to application performances (e.g. using ML)
 - for j=1...m, f($r(g_1, v_j), r(g_2, v_j), ..., r(g_k, v_j)$) = $r(q, v_j)$
- Prediction: Given a new configuration \mathbf{v} , run the top \mathbf{k} intervals to get performance result, then plug into ML model.
 - Evaluate r(g₁,v), r(g₂,v), ... r(g_k,v)
 - Estimate runtime as $r(q,v) \sim f(r(g_1,v), r(g_2,v), \dots r(g_k,v))$

Application to the SPEC benchmarks

Evaluation of our methodology to predict CPI in SPEC programs

- Evaluated ground truth of benchmark runtimes.
- Apply SimPoint to get a baseline prediction estimate
- Next steps are to apply DSA-SimPoint, and compare results.
- Later, consider DL-based clustering approaches, based on SimNet

Average SimPoint prediction error (%)

