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The Three Pillars of Large-scale Deep Learning
with contributions by the whole SPCL deep learning team (T. Ben-Nun, S. Li, N. Dryden and many others) and collaborators (D. Alistarh and others)
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Pushing the envelope in large-scale learning

…

High-Performance I/O High-Performance Compute High-Performance Communication

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Same major problems
• Data movement!

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Sparsification
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High-Performance I/O for deep learning
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▪ Example: ResNet-50 3.8 Gflop inference, ≈3x for training

▪ ImageNet is 150 GiB for ≈1.3M images → average size 115 kiB, range: 508B - 15MiB

▪ MLPerf on one A100 - 2.9k samples/s → 333 MiB/s random access → 2 SSDs / GPU

2-4x that for scientific problem such as CosmoFlow

▪ Training on thousands of GPUs may need to manage k × 1000s of SSDs

▪ But why do we need those even? Deep Learning workloads “randomly sample” input!

▪ By “random”, we really mean pseudo-random sequences with fixed seeds ☺

This enables clairvoyant prefetching!

Nail

Near-optimal Pre-Fetching System, aka. NoPFS
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▪ NoPFS acts as a distributed cache – each node keeps cache – fully knowing about the future!
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Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

single-process access to samples 
for ImagerNet with 16 processes

Some 
samples are 
accessed 18 

times!
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Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

ImageNet 1k with ResNet-50

Piz Daint

Lassen

PyTorch

PyTorch + DALI

NoPFS

>100x! >150x!
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▪ NoPFS acts as a distributed cache – each node keeps cache – fully knowing about the future!
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Clairvoyant Prefetching for Distributed Machine Learning I/O (arXiv 2101.08734)

ImageNet 1k with ResNet-50

Lassen

runtime per epoch (full training time)
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Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)

BERT encoder

Our performance improvement for BERT-large
▪ 30% over PyTorch
▪ 20% over Tensorflow + XLA
▪ 8% over DeepSpeed

est. savings on AWS over PyTorch:
$85k for BERT, $3.6M GPT-3

Operator class % flop % Runtime

Tensor contraction 99.80 61.0

Statistical normalization 0.17 25.5

Element-wise 0.03 13.5

39%0.2%

highly 
optimized
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Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)

different data 
layouts

different fusion 
strategies

Configuration selection graph

data layout

fusion strategy

TF+XLA PyTorch DeepSpeed Ours

Forward 3.2 3.45 2.8 2.63

Backward 5.2 5.69 4.8 4.38

Full BERT encoder layer performance (ms)

https://github.com/spcl/dace
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The three dimensions of parallelism in deep learning (arXiv:1802.09941)

Operator (Layer)
Parallelism

Data
Parallelism

Pipeline Parallelism

MB1

MB2

MB3

MB4

▪ Large-scale deep learning will need all three dimensions!

▪ Depends on the exact model configuration

▪ Sparsity makes it much more complex (interesting, more later)!
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▪ Turns out 90-99.9% of the gradient values can be skipped by choosing the top-k – achieve similar accuracy

▪ Accumulate the remainder locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])
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Data-parallel gradient sparsification – top-k SGD (arXiv:1809.10505)

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18 
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SparCML – Sparse allreduce for decentral updates (arXiv:1802.08021)

𝛻𝑤1 𝛻𝑤2 𝛻𝑤3 𝛻𝑤4

+ +

+ +

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, SC19

Microsoft Speech Production Workload Results – 2 weeks → 2 days!

Six epochs, 60 million params
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Unbalanced workloads in deep learning → eager-SGD (arXiv:1908.04207)

Some training scenarios cause different work across examples – e.g., video inputs of different lengths

UCF101 dataset
Min-max:   29 ~ 1,776 frames
Mean:   187 frames
Standard deviation: 97 frames

LSTM runtime on a P100
Min-max: 201 ~ 3,410 ms
Mean: 1,235 ms
Standard deviation: 706 ms

compute

wait

allreduce

solo allreduce

synchronous SGD

Smart NIC 
(e.g., sPIN)

eager SGD



spcl.inf.ethz.ch

@spcl_eth

19

Unbalanced workloads in deep learning → eager-SGD (arXiv:1908.04207)

solo allreduce

eager SGD

Top-1 test accuracy and runtime for LSTM on UCF101 
using 8 GPUs.

  

   

   

   

   

   

   

   

   

  

                                     
                       

 
 
 
  
 
 
 
 
  
 
 
  

                          

                       

                           

                          

                       

                          

      

      

      
     
     

     

eager SGD first triggers (solo) majority triggers

Speedup 
(over Horovod) 1.64x 1.27x

Top-1

(test accuracy)

average: 60.6%

(up to 70.4%)

average: 69.7%

(up to 72.8%)

Smart NIC 
(e.g., sPIN)
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▪ Model averaging sums the model weights, not the gradients – can delay summation even more

▪ Idea: sum partial groups, e.g., stages of allreduce for log2 𝑛 groups

Next step – wait-avoiding grouped model averaging (WAGMA) (arXiv:2005.00124)

eager SGD

WAGMA SGD

Deep reinforcement learning
(Proximal Policy Optimization on Habitat)
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Significantly faster training leads 
to better scores (more experience)

During the same compute time!

Every n 
iterations →
synchronous 

model 
update!
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Onwards to the future of large-scale learning and scientific computing!

…

High-Performance I/O High-Performance Compute High-Performance Communication

• Quickly growing data volumes
• Scientific computing!

• Use the specifics of machine
learning workloads

• E.g., intelligent prefetching

• Deep learning is HPC
• Same major problems
• Data movement!

• Use larger clusters (10k+ GPUs)
• Model parallelism

• Complex pipeline schemes
• Sparsification


