‘,,._ “\

ETHz(irich Sy P Yl DINFK

T. HOEFLER

The Three Pillars of Large-scale Deep Learning

2 | 3
ff";',l-.

with contributions by the whole SPCL deep learnmg team (T Ben-Nun, S. Li, N. Dryden and many others) and col_gbprators (D Allita'rh and 1

Pushing the envelope in large-scale learning

R

(

High-Performance 1/0

e Quickly growing data volumes

* Scientific computing!

* Use the specifics of machine
learning workloads

* E.g., intelligent prefetching

Jan 2021

I

CLAIRVOYANT PRE

CHING FOR DISTRIBUTED MACHINE LEARNING I/O

novel machine 1
flexible. and s
very few changes 1o existing codebases and supporting a broad range of environments.

Roman Bihringer ! Nikoli Dryden’ Tal Ben-Nun' Torsten Hoefler '

ABSTRACT

1/O is emerging as a major bottleneck for machine learning training, especially in distributed environments such
as clouds and supercomputers. Optimal data ingestion pipelines differ betwe
requires a delicate bz
frameworks fail to efficiently utilize such resources. We observe that, given the seed generating the random ac
pattern for training with SGD, we
We combine this with a theoretical analysis of access patterns in training and performance modeling to produc:

systems, and increasing efficiency

and remote workers; yel exi:

xternal files

s 10 local storag:

¢ clairvayance and can exactly predict when a given sample will be accessed.

re, HDMLP, to tackle the I/O bottleneck. HDMLP provides an easy-to-use,
lable solution that delivers better performance than state-of-the-art approaches while requiring

v
uonuaNy
PEIH-NINA

]
ULION % PPV

X

(

]

premio
paaq
Y
ULION 7% PPV
T

[

v
uonuaNy

PEOH-DINA
WON % PPV}«
d
WHON % PPV}«

(
(

High-Performance Compute

* Deep learning is HPC
e Same major problems
* Data movement!

| 2 Jul 2020

LC

Data Movement Is All You Need: A Case Study on
Optimizing Transformers

Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsien Hoefler
Tl

H

Abstract—Transformers have become widely used for language
modeling and sequence learning tasks, and are one of the most
important machine learning workloads today. Training one is a

i fien taking days or weeks, and
jon has been given to optimizing transformers.
ting implementations do not efficiently utilize
. We find that data movement is the key bottleneck when
training. Due to Amdahl's Law and massive improvements in
compute performance, training has now become memory-bound.
Further, existing frameworks use suboptimal data layouts. Usi
these we present a recipe for globally optimizing data
movement in transformers. We reduce data movement by up
to 22.91% and overall achieve a 1.30x performance improve-
ment over state-of-the-art frameworks when training BERT.
Our approach is applicable more broadly to optimizing deep
neural networks, and offers insight into how to tackle emerging

astname@ing.
Equal contribution

ch

challenges such as artificial general intelligence [27]. Thus,
improving transformer performance has been in the focus of
numerous research and industrial groups.

Significant attention has been given to optimizing transform-
ers: local and fixed-window attention [28]-[32], more general
structured sparsity [33], learned sparsity [34]-[36], and other
algorithmic techniques [19], [37] improve the performance of
transformers. Major hardw efforts, such as Tensor Cores
and TPUs [38] have accelerated tensor operations like matrix-
matrix multiplication (MMM), a core transformer operation.
Despite this, existing implementations do not eff
utilize GPUs. Even optimized implementations such as Meg
ton [18] report achieving only 30% of peak GPU flop/s.
We find that the key botitleneck when training transform-

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

* Complex pipeline schemes

s for

o[.
° Spa rsification
SPARCML: High-Performance Sparse Communication
for Machine Learning
Cedric Renggli ~ Saleh Ashkboos Mehdi Aghagolzadeh Dan Alistarh
ETH Zurich IST Austria Micrasoft IST Austria
o Torsten Hoefler
— ETH Fusioh
& Demystifying Parallel and Distributed Deep Learning: An
&0 In-Depth Concurrency Analysis
<
e TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland
- ~—— DeepNeural Networks (DNNs) are hecoming an important tool in modern computing applications. Accelerating
g < their training is a major challenge and techniques range from distributed algorithms to low-level circuit
= 1 design. In this survey, we describe the problem from a theoretical perspective, followed by approac]
- ¢y, its parallelization. We present trends in DNN architectures and the resulting implications on parallelization
= 7 strategies. We then review and model the different types of concurrency in DNNs: from the single operator,
=~ /) through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous

stochastic optimi: L d d system architectures, ion schemes, and neural architecture
search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning.

CCS Concepts: « General and reference — Surveys and overviews » Computing methodologies — Neural
ks; Parallel i ies: Distri i i

spcl.inf.ethz.ch oo o
v oo ETHZUriCh

Nail

High-Performance 1/0 for deep learning PA

= Example: ResNet-50 3.8 Gflop inference, =3x for training
= |mageNet is 150 GiB for ®1.3M images = average size 115 kiB, range: 508B - 15MiB
= MLPerf on one A100 - 2.9k samples/s = 333 MiB/s random access = 2 SSDs / GPU
2-4x that for scientific problem such as CosmoFlow

*= Training on thousands of GPUs may need to manage k X 1000s of SSDs

Near-optimal Pre-Fetching System, aka. NoPFS

= But why do we need those even? Deep Learning workloads “randomly sample” input!
= By “random”, we really mean pseudo-random sequences with fixed seeds ©

This enables clairvoyant prefetching! O

-

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Clairvoyant Prefetching for Distributed Machine Learning 1/O (arxiv 2101.08734)

= NOPFS acts as a distributed cache — each node keeps cache — fully knowing about the future!

-

single-process access to samples PRNG seed — Access stream R = (--+,7,4,5,8,-)

for ImagerNet with 16 processes ,
Accesses for worker i

200000 Cached in local
storage
| |
Fetched from remote
. 150000 — workers
4K}
EL Some
samples are - . ’
N 1 60000 P Filled in access order R
accessed 18
« | Storage class 2 I I
| [}]
times! =
&
storage class 1 [T T
_I Il- |
0 Staging buffer ~| 7145 I 8-

14 16 18
.I'-.c cess f req uenc:,.r

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Clairvoyant Prefetching for Distributed Machine Learning I/O

= NOPFS acts as a distributed cache — each node keeps cache — fully knowing about the future!

= .Iln

PVTQ >100x! >150x!
1 X 1 1.75 l
Max: 55.0 M# 56.1 Max: 528 Max: 51.4 Max: 61.3 Max: 53.0 1 50 }a)(' 1 }ar 5.3 ‘hax 8.7 'hax: 17.6 'Dalx‘ 37.7 '}ax 70.8
6 NoPFS :
w o 1.25
q) S
E 4 £ 1.00
S = 0.75
S 5 2
m 0.50
. “ “ 0.25 —
/32 o4 128 256 00 32 64 128 256 512 1024
PyTorch + DALI #GPUs 4GPUs

ImageNet 1k with ResNet-50

v ewien ETHZzUrich
Clairvoyant Prefetching for Distributed Machine Learning I/O

NoPFS acts as a distributed cache — each node keeps cache — fully knowing about the future!

. " "‘\“- ‘\,_‘A:\
el | [TS
= CImmn
I

Tl |

runtime per epoch (full training time)

300

= mmm PyTorch B NoPFS - M PyTorch — === No |/O
o 400 mmm PyTorch+DALI === No |/O Y 200 mmm NoPFS
E E
E =
o 200 g 100
o (=
: 5 ' g M

0 0

30 64 128 256 32 64 128 256 512 1024
#GPUs #GPUs

ImageNet 1k with ResNet-50

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Pushing the envelope in large-scale learning

)
J

Y
uonuaNy

PedH-BIMA
Y
uonuaNy

PEOH-DINA
WON % PPV}«
d
WHON % PPV}«

]
ULION % PPV

premio
paaq
Y
ULION 7% PPV
T

(
[
(
(
[\
:

High-Performance Compute High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

* Complex pipeline schemes
 Sparsification

* Deep learning is HPC
e Same major problems
* Data movement!

Data Movement Is All You Need: A Case Study on SPARCML: High-Performance Sparse Communication
Optimizing Transformers for Machine Learning
Cedric Renggli ~ Saleh Ashkboos Mehdi Aghagolzadeh Dan Alistarh
Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsten Hoefler ETH Zurich IST Austria Microsoft IST Austria
TH Zirich o Torsten Hoefler
tname@inf.ethz.ch = e
Equal contribution = . . . N
& Demystifying Parallel and Distributed Deep Learning: An
) &0 In-Depth Concurrency Analysis
Abstract—Transformers have become widely used for language challenges such as artificial general intelligence [27). Thus, =
modeling and sequence learning tasks, and are one of the most improving transformer performance has been in the focus of <
_ important machine learning workloads today. Training one 18 8 uyerous esearch and industrial groups. O TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland
- te-intensive task, often taking days or weeks, and "I REREL AnC NI DS, ansto =
=] jon has been given to optimizing transformers. ‘Ig"‘ ‘I“‘“d‘h““d" n J“ ‘[:‘ “' e E‘,;]p [":‘,'I' ing transfo ”“L Deep Neural Networks (DNNs) are hecoming an important tool in modern computing applications. Accelerating
tr hers. ocal 4 ed-window attention [28]-[32]. more genera .
= e, e s o o e e Fctued soarsity [‘;[I' — 4] I‘:Ii e e <> their training is a major challenge and techniques range from distributed algorithms to low-level circuit
training, Due o Amduhl’s Low and massive improvements. i “"“ l";\‘ ; ':""hw - ‘“;“”:‘m‘."""" e pert and o “; = €1 design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for
— algs : techniques [19]. |3 ove the performance of
= compute performance, traininng has now become memory-bound 1o S L P mor Cores] , its parallelization. We present trends in DNN architectures and the resulting implications on parallclization
“= Further, existing frameworks use suboptimal data layouts, Using »”TT‘PTL;;:Z\';-I:T eloated 1o onetations e matn . o) strategies. We then review and model the different types of concurrency in DNN: from the single operatar,
) these we present a recipe for glabally optimizing data "~ <01 VG aeeeICraled [Ensor operations ke matx = O through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous
movement in transformers. We reduce data movement by up Matrix multiplication (MMM), a core transformer operation. stochestis ibuted system o schemes, and neural architeeture
T o 2291% and overall achieve a 130 performance improve- - Despite (his, existing implementations do not efficiently L) e Dased on those appraaches, we extrapolate potentia directions for parallelsm i deep learning
{7 ment over state-ol-the-art frameworks when training BERT. ugilize GPUS. Even optimized implementations such as Megi- — pproaches, polate p P p learning,
] Our approach is applicahle more braadly to aptimizing 4D oy [15] report achieving only 30% of peak GPU flops. CCS Concepts: « General and reference — Surveys and overviews: - Computing methodologies — Neural
— w | § e v .
+ meural networks, and offers insight Into how to tackle emerging "y 5y uq the key buttleneck when training transform- Parallel

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Data Movement Is All You Need: A Case Study on Optimizing Transformers

BERT encoder Output
4 N\
[Lin‘(:ar] .[Add & LayerNorm]
[Concatenate] [Feedforward net] j§:
“00 Z
s 5
L g
Scaled dot-product attention [Add & LayerNorm] e
softmax 3 z
Multi-head S
[Llnear [Llnear [Lmear attention .
= |
_—— J
Positional
@
[Input embedding]
4
Input

OpenAl booth at NeurlPS 2019 in Vancouver, Canada
Image Credit: Khari Johnson / VentureBeat

Last week, OpenAl published a paper detailing GPT-3, a machine learning model that achieves

strong results on a number of natural language benchmarks. Ay 175 billion parameters

where a parameter affects data's prominence in an overall prediction, it's the largest of its

kind. And with a memory size exceeding 350GB, it's one of the priciest, costing an estimated

$12 million to train.

highly
optimized)
Operator class % flop % Runtime
Tensor contraction 99.80 61.0
Statistical normalization 0.17 25.5
Element-wise 0.03 13.5

0.2% 39%

Our performance improvement for BERT-large
= 30% over PyTorch
- 20% over Tensorflow + XLA
- 8% over DeepSpeed

est. savings on AWS over PyTorch:
S85k for BERT, $3.6M GPT-3

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Data Movement Is All You Need: A Case Study on Optimizing Transformers

° /\ Tensor contraction ‘b , (:”:)
§V> % [] Normalization §© % different data dxlin2, linl

(O Elementwise 910 9G M: 4096, N: 4096, K: 1024, B: 1
whi,ibk->whbk phl ibk- >phbk phl ibj- >phbj - layouts worst: 2.46 ms best: 0.37 ms

l \ . Tensor Cores -_ e

4M 34M - worst: 3.29 ms best: 2.32 ms a C e
bias [wh] dropout . L6.bit FPUS —0—“
blas [ph] blas [ph] . . | | . https://github.com/spcl/dace
, ' ' 0 25 50 75 100
G d ifferent fusion % of peak performance
4 @
whbk,hbjk- >thj strategies
A v @ AIB BAIB : : i
@ D Aphbk,phbj->hbj< 10 = op P EE— Configuration selection graph
v 10 < flop QKV-fused AlB
9G 910 0751
- hi hb'->'b @ A infout out
AW I,whbj->ibj flop / 10 @ N
| 168M = 050- —
IS
i

target

ftmax [
@ bias [} | M HA i {} 0.25-

0- pest:0.065 0.00- best 0.033

Full BERT encoder layer performance (ms)

data layout
TF+XLA PyTorch DeepSpeed Ours
Forward 3.2 3.45 2.8 2.63 '
Backward 5.2 5.69 4.8 4.38 fusion strategy

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Pushing the envelope in large-scale learning

}4_

— r—\—Lr—\

Y
uonuaNy

Y
uonuaNy

PEOH-BINN
v
WON % PPV}«
q
WHON % PPV}«

PEOH-BIMA
Y
ULION 7% PPV
premio
paaq
Y
ULION 7% PPV
T

(
[
(
|
(
[\
C

High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

* Complex pipeline schemes
 Sparsification

SPARCML: High-Performance Sparse Communication
for Machine Learning

Cedric Renggli Saleh Ashkboos Mehdi Aghagolzadeh Dan Alistarh
ETH Zurich IST Austria Microsoft IST Austria

Torsten Hoefler
ETH Zuysi

Demystifying Parallel and Distributed Deep Learning: An
In-Depth Concurrency Analysis

TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland

Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating
their training is a major challenge and techniques range from distributed algorithms ta low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, follawed by approaches for
its parallelization. We present trends in DNN architectures and the resulting implications on parallelization
strategies. We then review and model the different types of concurrency in DNNs: from the single operator,
through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous
stochastic optimi: . distributed system architectures, ion schemes, and neural architecture
search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning.

Sep 2018

5

1

CCS Concepts: « General and reference — Surveys and overviews » Computing methodologies — Neural
ks; Parallel ies: Distributed i i

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

The three dimensions of parallelism in deep learning

MB1

MB2

MB3

MB4

Data
Parallelism
5T e TS 2 O OV 1 £ E K
SMES . ANGEIEAE @S D =L
RN PIEE-S 6« L0l=wll ﬂ Eﬂﬂ ﬂ'ﬂ L & 5°%
BESZEIR ¢ Il& e | - FE.W. T
BRNCGE T L & Paed Te.

i | & -.ml-kl
HMR\BBUEEBW S S
El!_ Al T & EHR 5 EeEs s i

OGS a | = S 5 EEEe,s AP0
EO O M BGLNSHERSINEE NO%

BN DS e Hoa9 8
AROWE - 8%+ BLUE LURCPE HYSEDE .

W oAxiac RS ANLGE

CELEYEEA

bgggg!gnamc !-an)
FOBOERNEHLCEadBOREROR B0 £ MEnmE o9,
CBRAOCIESOT < M B S50 IR oS et
LTS TP e P TE aRk ¢ AP 0 2w | N
8 BERTCHIRLMyADN DEALNGEe ONEERAERAI
HEe =oH ¢RI ME SENG WUos IBSEEE
FE Ao elNE @ oL | BEeLR-AG F 2 5P nEl
HEDF OEGEHS 28 Dar S 2Ha ' REORABAE 2 |
CEFE Tl P o PENE I o 15 B COEFEMNEENSESSEETIS OFS VIS 0 e
Bl ae 3C0uE TE- 0k BEeIR LG a2 SRR aai
HEDF OECEHS 28 SEy S THLe REORANMAE B |
HROALUEGos Nd ¢ aRi CENNEAEES 0850 2 S 5
A oEpEE. M Bl CHINI Ao ulelRan 2 DR
NEE =S e D OB S okl BECDA 25
P yEEEDL ST DR 2NERRNAGL RATEE . < on
EONELR DE.Es0CSRni c s RRES 8 TRAS S

Large-scale deep learning will need all three dimensions!
= Depends on the exact model configuration
= Sparsity makes it much more complex (interesting, more later)!

Operator (Layer)
Parallelism

Pipeline Parallelism

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Data-parallel gradient sparsification — top-k SGD

= Turns out 90-99.9% of the gradient values can be skipped by choosing the top-k — achieve similar accuracy
= Accumulate the remainder locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

Assumption 1. There exists a (small) constant & such that, for every iterationt > 0, we have:
1 "1
TopK (3 (eGP () +) | =D 5TopK (aGh(ve) +) || < llaGi(vr)]|

p=1 p=1

Discussion. We validate Assumption 1 experimentally on a number of different learning tasks in
Section 6 (see also Figure 1). In addition, we emphasize the following points:

0.700

— Topk [K=0_1%] ~ —— Topk [K=0.025%]
06759 200} Topk [K=1.0%] 2.01 —— TopK [K=0.1%]
0.6501 — TopK [K=10.0%] ~ —— TopK [K=0.2%]
. = —— Baseline _13- = Baseline
5 0.6251 5 190 2
& 3 S10
05001 1004
0.5751 0.3
0.5501 501 0.0
0 10 20 20 40 50 0 10 20 30 47 50 0 Zs so 75 100 125 1%0
Epoch Epoch Epoch
(a) RCV1 convergence. (b) Linear regression. (c) ResNetl 10 on CIFARI10.

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18

spcl.inf.ethz.ch oo o
v oo ETHZUriCh

SparCML - Sparse allreduce for decentral updates

1 2 3 4 Six epochs, 60 million params
1.225 A1 — 16-GPU BMUF 128 | === Linear Scalability
32-GPU SparCmL —e— SparCML
—— 64-GPU SparcML

1.200 4 —— 128-GPU SparCML

1.175 4

1.150 A
w
w
=2
o L1254 &4
(]

1.100 4 ; \ . . ; ;]

0 200 400 600 800 1000 1200
{min)
1.075 4 2
. . TR
L. '
1.050 1 -
8
10251 1
0 2500 5000 7500 10000 12500 15000 17500
time (min) 148 16 32 64 128

Microsoft Speech Production Workload Results — 2 weeks = 2 days!

System Dataset | Model # of nodes | Algorithm Speedup
Piz Daint | ImageNet | VGG19 8 | Q4 1.55 (3.31)
Piz Daint | ImageNet | AlexNet 16 | Q4 1.30 (1.36)
Piz Daint . | Topl6_Q4 3.65 (4.53)
EC2 MNIST MLP 8 Topl6_Q4 | 19.12(22.97)

C. Renggli, TH et al. SparCML: High-Performance Sparse Communication for Machine Learning, SC19

v omien ETHZzUrich
Unbalanced workloads in deep learning = eager-SGD

Some training scenarios cause different work across examples — e.g., video inputs of different lengths

J - i synchronous SGD
2000 ! UCF101 dataset m y

1500- Min-max: 29~ 1,776 frames
Mean: 187 frames
Standard deviation: 97 frames

]

:]

o an - =
0- C

Number of videos
)
O
()

0 200 400 600 800 1000 1200 1400 1600 1800 ;

Number of frames il
 100- ~ : eager SGD
2 = i [LSTM runtime on a P100 — 1| L
-% S HlAdANE Min-max: 201~ 3,410 ms — | = - —
f 50 L 1 Mean: 1,235 ms] - B
o | || [Mstandard deviation: 706 ms
5 = =
: - — = E =
2 o _ =

0 500 1000 1500 2000 2500 3000 3500
Runtime (milliseconds) solo allreduce

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Unbalanced workloads in deep learning = eager-SGD

Test accuracy %
w b~ O,
o O

-=synch-SGD (Horovod, top1)
—-eager-SGD (solo, top1)
--eager-SGD (majority, top1)
synch-SGD (Horovod, top5)
-+ eager-SGD (solo, top5)
“*-eager-SGD (majority, top5)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Training time (seconds)

Top-1 test accuracy and runtime for LSTM on UCF101

using 8 GPUs.

eager SGD Smart NIC
— = (e.g., sPIN)
-~ E H =1
— . o] I
— - BE= -— :*
— = = — ¥ [
— =

STXELTE 1.64x 1.27x

(over Horovod)

Top-1 average: 60.6% average: 69.7%

(test accuracy) (up to 70.4%) (up to 72.8%)

spcl.inf.ethz.ch oo o
v oo ETHZUriCh

Next step — wait-avoiding grouped model averaging (WAGMA)

= Model averaging sums the model weights, not the gradients — can delay summation even more
= |dea: sum partial groups, e.g., stages of allreduce for log, n groups

eager SGD

Mliocal SGD [T AD-PSGD [IWAGMA-SGD ideal throughput
o-PsGD [HISGP (4n)

-
@
+
o
($)]

8e+0d- | Significantly faster training leads
T to better scores (more experience)

£ 6ev04- |7 V (ﬁ During the same compute time!

i

Throughput (experience steps/s)

|
ARNEET
RULR

= 4e+04 local SGD D-PSGD AD-PSGD SGP WAGMA-SGD Ideal 0.9
1 1024 nodes . ~local SGD -+-SGP (4n)
SEIGE 0.8 i o mAD_PSGD EEWAGMA-SGD
e+ ' e e
0.7 P s
ideal throughput 0.622 0.661 | FY o
WAGMA SGD deal troughput (22 UL, m 0,go RO P L B RV
0e+00. ~=2Troudnbr o0
e 16nodes 64nodes 256nodes 1024n0d48 05 (i pwoasy M '
. . — 0.4-
— . Deep reinforcement Iearnlng % o j
— = i Every n (Proximal Policy Optimization on Habitat) a T
iterations 2> 0.2- .
] 1 H synchronous 01- 1
—_ l_ model ‘
update! 0.0- ‘) ' _ ‘ . _ . ' . .
I 0 i 2 3 4 5 6 7 8 9 10
Training time (hours)

Onwards to the future of large-scale learning and scientific computing!

R

(

-

(

High-Performance 1/0

e Quickly growing data volumes

* Scientific computing!

* Use the specifics of machine
learning workloads

* E.g., intelligent prefetching

Jan 2021

I

CLAIRVOYANT PRE

CHING FOR DISTRIBUTED MACHINE LEARNING I/O

Roman Bihringer ! Nikoli Dryden’ Tal Ben-Nun' Torsten Hoefler '

ABSTRACT

1/O is emerging as a major bottleneck for machine learning training, especially in distributed environments such
as clouds and supercomputers. Optimal data ingestion pipelines differ betwe
requires a delicate bz
frameworks fail to efficiently utilize such resources. We observe that, given the seed generating the random ac
pattern for training with SGD,
We combine this with a theoret
novel machine 1
flexible, and s
very few changes to existing codebases and supporting a broad range of environments.

systems, and inc
and remote workers; yel exi:

ing efficiency

xternal files

s 10 local storag:

¢ clairvoyance and can exactly predict when a given sample will be accessed.
analysis of access patterns in training and performance modeling to produc
re, HDMLP, to tackle the I/O bottleneck. HDMLP provides an easy-to-use,
lable solution that delivers better performance than state-of-the-art approaches while requiring

\ 4

uonuaNy
PEIH-NINA

}4._

]

ULION % PPV

}<_

premio
paaq
Y
ULION 7% PPV
T

[

Y
uonuaNy

PEOH-DINA
v
WON % PPV}«
d

(
(

High-Performance Compute

* Deep learning is HPC
e Same major problems
* Data movement!

poay
¥

WON % PPV
1

2 Jul 2020

1

LC

Data Movement Is All You Need: A Case Study on
Optimizing Transformers

Andrei Ivanov®, Nikoli Dryden®, Tal Ben-Nun, Shigang Li, Torsien Hoefler
Tl

H

Abstract—Transformers have become widely used for language
modeling and sequence learning tasks, and are one of the most
ne learning workloads today. Training one is a
fien taking days or weeks, and
jon has been given to optimizing transformers.
ting implementations do not efficiently utilize
. We find that data movement is the key bottleneck when
training. Due to Amdahl's Law and massive improvements in
compute performance, training has now become memory-bound.
Further, existing frameworks use suboptimal data la Jsi
these we present a recipe for glabally optim

Our approach is applicable more broadly to o
neural networks, and offers insight into how to tackle emerging

astname@ing.
Equal contribution

ch

challenges such as artificial general intelligence [27]. Thus,
improving transformer performance has been in the focus of
numerous research and industrial groups.

Significant attention has been given to optimizing transform-
ers: local and fixed-window attention [28]-[32], more general
structured sparsity [33], learned sparsity [34]-[36], and other
algorithmic techniques [19], [37] improve the performance of
transformers. Major hardw efforts, such as Tensor Cores
and TPUs [38] have accelerated tensor operations like matrix-
matrix multiplication (MMM), a core transformer operation.
Despite this, existing implementations do not eff
utilize GPUs. Even optimized implementations such as Meg
ton [18] report achieving only 30% of peak GPU flop/s.
We find that the key botitleneck when training transform-

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

High-Performance Communication

* Use larger clusters (10k+ GPUs)
* Model parallelism

* Complex pipeline schemes
 Sparsification

SPARCML: High-Performance Sparse Communication
for Machine Learning

Cedric Renggli Saleh Ashkboos Mehdi Aghagolzadeh Dan Alistarh

ETH Zurich IST Austria Micrasoft IST Austria

-~ Torsten Hoefler
— ETH Fusioh
¢ Demystifying Parallel and Distributed Deep Learning: An
&0 In-Depth Concurrency Analysis
<
e TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland
i Deep Neural Networks (DNNs) are hecoming an important tool in modern computing applications. Accelerating
g < their training is a major challenge and techniques range from distributed algorithms to low-level circuit
4 €1 design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for
—), its parallelization. We present trends in DNN architectures and the resulting implications on parallclization
= 7 strategies. We then review and model the different types of concurrency in DNNs: from the single operator,

: O through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous

w stochastic optimi: . d system architectures, ion schemes, and neural architecture
search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning.

CCS Concepts: « General and reference — Surveys and overviews » Computing methodologies — Neural

ks; Parallel

