
Challenges and Directions in
Modeling Cloud Performance

Modsim 2022

Abhishek Dhanotia

Agenda

01 Motivation - why model performance in
private clouds?

02 Challenges with performance modeling
@scale

03 Directions - Meta Perspective

Goals

❖ Define and build a limited number of different server types (a.k.a system shapes)
❖ Optimize platforms for rack and fleet level efficiency
❖ Provide reliable performance and efficiency signals for capacity planning
❖ Ensure all possible workloads and use cases are supported via roadmap offerings

Non-Goals

❖ Build the biggest possible systems
❖ Maximize total available vCores or persistent bytes in datacenters

Modeling private cloud performance

Motivation

Challenges in modeling
cloud performance

CHALLENGES

Challenge #1 - Workload Diversity

Looking at CPU cycles spent on one server type.
Multiple different server types to run workloads with different resource requirements
Practically impossible to model every individual service that runs in the fleet
Need creative ways to limit the scope of work needed for performance modeling

Challenge #2 - What qualifies as a cloud workload?

There is much more going on on the server than just the core application logic*
Not every part of the workload scales at the same rate and w/ same uArch or system architecture improvements
Optimizing just for the ‘application logic’ can lead to misleading results.

*Accelerometer paper (ASPLOS 2020) discusses orchestration logic and what it constitutes

%
 o

f C
P

U
 C

yc
le

s

Challenge #3 - Evolving Codebases

Committers and Commits per day on one stack over a year (large dips reflect holidays)
Multiple application stacks (usually one per service) are usually supported in every cloud environment
Scale of y-axis depends on the application stack and can vary between O(10) to O(1K)
Taking a snapshot of a workload at a point in time can lead to low fidelity results over medium-long term

Challenge #4 - Diverse resource
bottlenecks across workloads

 ❖ Large variance in uArch level resource
bottlenecks across workloads => over
optimizing a particular use case can cause
fleet level regressions

❖ Large variance in system level resource
bottlenecks
➢ important to find the sweet spot for fleet

efficiency.
➢ Important to stack (bin pack) as needed

❖ Subjective tradeoffs between building
optimal HW system vs. SW resources

CPU FrontEnd vs. BackEnd bound across one server
SoftSKU Paper (ISCA 2020) discusses this in more detail

Memory per core usage across one server type
Transparent Page Placement Paper (arxiv) discusses this in more detail

G
B

 p
er

 c
or

e
re

qu
ire

m
en

t

Challenge #5 - What does efficiency mean? Which metrics to optimize?

Performance: But, what to use to measure performance given the large variety of workloads?

Total Cost of Ownership (TCO): But how to measure TCO? What constitutes cost in a cloud
environment?

vCores per Watt or per $: But, what if cores have different capabilities or workload has
dependencies on multiple HW resources (CPU, GPU, Flash, Network)

Performance per Watt: But, what constitutes watt here? Is this max power or current power? How
to factor in utilization levels and diurnal workload patterns?

How to balance multiple metrics of interest?

Directions in modeling
cloud performance

Direction #1 - Workloads

Evaluate a wide variety

• Data Ingestion - At line rate to keep trainers busy
• Distributed Training - Offline training w/ multiple model sizes and object size

distributions
• Ranking and real time inference - Online services with varying sizes of ML models

performing low latency ranking or inference.
• Warehousing and Analytics - In-memory and In-storage analytics with varying amount

of back-end data to deal with.
• Caching - Multiple flavors (look aside, look through), varying object sizes, retention

times and latency SLAs.
• End user (Web) Serving

Use data science and ML to find similarities and differences

• Not every workload has unique characteristics.
• No need to model performance for every application

Direction #2 - Factor in orchestration
overheads

❖ (u)Service oriented architecture of cloud

applications => portion of cycles are spent talking
to other applications

❖ These ‘orchestration’ work can take up significant
CPU cycles, more than application logic in some
cases

❖ Just speeding up application logic can lead to
diminishing returns, might even cause
performance regressions.

Accelerometer paper (ASPLOS 2021) talks about this in
more detail

Performance models should capture
end to end performance

Taking data compression acceleration as an example

❖ Only running compression on the system is not useful
❖ Only running a single thread to extract max compression

throughput is not useful
❖ Only running on very large block sizes or high compression level

is not useful

What is useful?

❖ Demonstrating benefit on an end-to-end representative
benchmark that also does compression

❖ Demonstrating benefit across different use cases of
compression in the fleet

Example use case for compression at Meta
ISPASS 2022 abstract talks about this in a bit more detail

Direction #3 - Representative benchmarks and right
operating points
(for black-box environments or when production testing is not possible)

We use end-to-end representative benchmarks developed in-house to capture these aspects

Relative CPU cycles spent on different
compression levels and block sizes

Percentage of CPU cycles spent doing
compression

SVC1 SVC2 SVC3 SVC4 SVC5 SVC6 AVG

Direction #4 - Systematic load testing
frameworks
(for white-box testing in production environments)

❖ Test with real binaries and production traffic
(shadowed, replayed or live) when possible.
➢ Helps naturally evolve the perf work with

‘current’ codebase and traffic patterns

❖ Push workload to the right saturation points
➢ Latency SLAs mean that the machine is likely

not going to run at 100% utilization
➢ Fault tolerance SLAs mean leaving headroom

for traffic spikes

❖ Enable A/B and B/A testing to account for
variance and eliminate noise
➢ Performance variance can be as high as 10%

in @scale deployments

Migrate hosts for
experimentation

Test Tier Control Tier

Kraken paper (OSDI 2016) provides an overview of Meta’s
load testing framework

https://research.facebook.com/publications/kraken-leveraging-live-trafc-tests-to-identify-and-resolve-resource-utilization-bottlenecks-in-large-scale-web-services/

Direction #5 - System configuration

❖ Non-Goal: Build the largest system => The system might
not have the max memory or CPU frequency or network
bandwidth
➢ Using the right system configuration for perf modeling is

important.

❖ Modern platforms provide many configurable knobs in HW
and SW. Production applications can and do use them to
further improve efficiency (E.g different turbo modes or
different page sizes)
➢ Learning about and using the right HW/SW setup per

application helps improve fidelity of results

SoftSKU paper (ISCA 2020) and Twine Paper
(OSDI 2020) discuss flexible system

configuration

01
Performance

As measured by rack level perf that
can be achieved while meeting all SLA
requirements.

Rack performance at fleet level is
derived from blending performance of
large workloads.

Power here is the budgeted power
that a rack consumes @ peak load.
This includes servers, sleds, network
switches, power supply and cooling.

Power efficiency is Rack Performance
normalized by budgeted power.

02
Power Efficiency

Direction #6 - Appropriate use of metrics

Cost here is the total expense to keep
the rack alive in the datacenter. This
includes CAPEX (cost of all
components) + OPEX (Network
provisioning, DC space, technicians,
electricity and spares)

TCO efficiency is Rack performance
normalized by Rack TCO.

03
TCO Efficiency

Priority among metrics depends on many external factors and can change over time

Questions?
THANK YOU FOR YOUR TIME

