Challenges and Directions in Modeling Cloud Performance

Modsim 2022

Abhishek Dhanotia

Agenda

01 Motivation - why model performance in private clouds?

02 Challenges v @scale

03 Directions - Meta Perspective

02 Challenges with performance modeling

Modeling private cloud performance

Goals

- Define and build a limited number of different server types (a.k.a system shapes)
- Optimize platforms for rack and fleet level efficiency
- Provide reliable performance and efficiency signals for capacity planning
- Ensure all possible workloads and use cases are supported via roadmap offerings

Non-Goals

- Build the biggest possible systems
- Maximize total available vCores or persistent bytes in datacenters

Challenges in modeling cloud performance

Challenge #1 - Workload Diversity

Looking at CPU cycles spent on one server type.

Multiple different server types to run workloads with different resource requirements Practically impossible to model every individual service that runs in the fleet Need creative ways to limit the scope of work needed for performance modeling

Challenge #2 - What qualifies as a cloud workload?

There is much more going on on the server than just the core application logic* Not every part of the workload scales at the same rate and w/ same uArch or system architecture improvements Optimizing just for the 'application logic' can lead to misleading results.

*Accelerometer paper (ASPLOS 2020) discusses orchestration logic and what it constitutes

Challenge #3 - Evolving Codebases

Committers and Commits per day on one stack over a year (large dips reflect holidays) Multiple application stacks (usually one per service) are usually supported in every cloud environment Scale of y-axis depends on the application stack and can vary between O(10) to O(1K) Taking a snapshot of a workload at a point in time can lead to low fidelity results over medium-long term

Challenge #4 - Diverse resource bottlenecks across workloads

- Large variance in uArch level resource * bottlenecks across workloads => over optimizing a particular use case can cause fleet level regressions
- Large variance in system level resource * bottlenecks
 - ➤ important to find the sweet spot for fleet efficiency.
 - Important to stack (bin pack) as needed \succ
- Subjective tradeoffs between building * optimal HW system vs. SW resources

Backend Bound %

CPU FrontEnd vs. BackEnd bound across one server SoftSKU Paper (ISCA 2020) discusses this in more detail

Memory per core usage across one server type Transparent Page Placement Paper (arxiv) discusses this in more detail

Challenge #5 - What does efficiency mean? Which metrics to optimize?

Performance: But, what to use to measure performance given the large variety of workloads?

Performance per Watt: But, what constitutes watt here? Is this max power or current power? How to factor in utilization levels and diurnal workload patterns?

Total Cost of Ownership (TCO): But how to measure TCO? What constitutes cost in a cloud environment?

vCores per Watt or per \$: But, what if cores have different capabilities or workload has dependencies on multiple HW resources (CPU, GPU, Flash, Network)

How to balance multiple metrics of interest?

Directions in modeling cloud performance

Direction #1 - Workloads

Evaluate a wide variety

- Data Ingestion At line rate to keep trainers busy
- Distributed Training Offline training w/ multiple model sizes and object size distributions
- Ranking and real time inference Online services with varying sizes of ML models performing low latency ranking or inference.
- Warehousing and Analytics In-memory and In-storage analytics with varying amount of back-end data to deal with.
- Caching Multiple flavors (look aside, look through), varying object sizes, retention times and latency SLAs.
- End user (Web) Serving

Use data science and ML to find similarities and differences

- Not every workload has unique characteristics.
- No need to model performance for every application

Direction #2 - Factor in orchestration overheads

- (u)Service oriented architecture of cloud
 Applications => portion of cycles are spent talking
 to other applications
- These 'orchestration' work can take up significant CPU cycles, more than application logic in some cases
- Just speeding up application logic can lead to diminishing returns, might even cause performance regressions.

Performance models should capture end to end performance

Accelerometer paper (ASPLOS 2021) talks about this in more detail

Direction #3 - Representative benchmarks and right operating points

(for black-box environments or when production testing is not possible)

Taking data compression acceleration as an example

- Only running compression on the system is not useful
- Only running a single thread to extract max compression throughput is not useful
- Only running on very large block sizes or high compression level is not useful

What **is** useful?

- Demonstrating benefit on an end-to-end representative benchmark that *also* does compression
- Demonstrating benefit across different use cases of compression in the fleet

We use end-to-end representative benchmarks developed in-house to capture these aspects

Percentage of CPU cycles spent doing compression

Relative CPU cycles spent on different compression levels and block sizes

Example use case for compression at Meta ISPASS 2022 abstract talks about this in a bit more detail

Direction #4 - Systematic load testing frameworks

(for white-box testing in production environments)

- Test with real binaries and production traffic (shadowed, replayed or live) when possible.
 - Helps naturally evolve the perf work with 'current' codebase and traffic patterns
- Push workload to the right saturation points
 - Latency SLAs mean that the machine is likely not going to run at 100% utilization
 - Fault tolerance SLAs mean leaving headroom for traffic spikes
- Enable A/B and B/A testing to account for variance and eliminate noise
 - Performance variance can be as high as 10% in @scale deployments

Cand Test
Load I Sta

Kraken paper (OSDI 2016) provides an overview of Meta's load testing framework

Direction #5 - System configuration

- Non-Goal: Build the largest system => The system might not have the max memory or CPU frequency or network bandwidth
 - Using the right system configuration for perf modeling is important.
- Modern platforms provide many configurable knobs in HW and SW. Production applications can and do use them to further improve efficiency (E.g different turbo modes or different page sizes)
 - Learning about and using the right HW/SW setup per application helps improve fidelity of results

SoftSKU paper (ISCA 2020) and Twine Paper (OSDI 2020) discuss flexible system configuration

Direction #6 - Appropriate use of metrics

01 Performance

As measured by rack level perf that can be achieved while meeting all SLA requirements.

Rack performance at fleet level is derived from blending performance of large workloads.

UZ Power Efficiency

Power here is the budgeted power that a rack consumes @ peak load. This includes servers, sleds, network switches, power supply and cooling.

Power efficiency is Rack Performance normalized by budgeted power.

03 TCO Efficiency

Cost here is the total expense to keep the rack alive in the datacenter. This includes CAPEX (cost of all components) + OPEX (Network provisioning, DC space, technicians, electricity and spares)

TCO efficiency is Rack performance normalized by Rack TCO.

Priority among metrics depends on many external factors and

can change ov	ver time
---------------	----------

Uct Air Battle			U41	
U40	100 TOR Wedge100/1005			U40
U39	Air Baffe			U39
USB				U38
U37	Yosemite	Yosemite V3	Yosemite V3	U37
U36	V3			U36
U35				U35
U34			Yosemite V3	U34
USS	Yosemite	Yosemite		U00
U32	V3	V3		U32
U01				U31
U30				U30
U29	Power Shelf		U29	
U28			U28	
U27				U27
U26	Yosemite	Yosemite V3	Yosemite V3	U26
U25	V3			U25
U24				U24
U23				U23
U22	Yosemite V3	Yosemite V3	Yosemite V3	U22
U21				U21
U20				659
U19	1		Yosemite V3	U19
U18	Yosemite	Yosemite		U18
U17	V3	V3		U17
U16				U16
U15				U15
U54	Yosemite	Yosemite V3	Yosemite V3	U14
U13	V3			U13
U12				U12
USI	Power Shelf			U11
U10				U10
U9				U9
U8			Yosemite V3	UB
U?	Yosemite	Yosemite V3 V3		UT
U6	V3			US
US				U5
U4				U4
U3	Yosemite	Yosemite V3	Yosemite V3	U3
42	V3			U2
U1				U1

Questions?

THANK YOU FOR YOUR TIME