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Virtuous Cycle of a General Purpose
echnology (semiconductors)

Technology
Advances

Finances More Users
Innovation Adopt

From Neil Thompson, MIT
Lecture at ISC 2019



Fragmenting of a General Purpose
echnology

Technology
Advances Slow

Finances
Innovation Is Fewer New

More Users Adopt
Challenging

From Neil Thompson, MIT
Lecture at ISC 2019



Computing is Fragmenting — and so is HPC
Time
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The Cambrian Explosion

541 million years ago
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The Cambrian Explosion
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The Cambrian Explosion of HPC

Fast Forward to 2022
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The Cambrian Explosion of HPC

Supercomputers and Superintelligence | Horst Simon | 9
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Fragmentation

A wealth of technology choices for HPC
We are living in a golden age of exploration, ....

... but the future is as clear as mud.




Market Concentration (FAANG+BAT)

Control of the computing ecosystem
Trillion+ $ (USD) companies
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Figure 6: Computing Company Market Capitalization

From Reed, Gannon, and Dongarra https://arxiv.org/abs/2203.02544
m BERKELEY LAB
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Biggest Hyperscale Sites

(http://worldstopdatacenters.com/hyper-scale-data-centers/)

Biggest Hyperscale Sites

Dwa rf H PC S iteS This Top Ten ranks the biggest Hyperscale Sites around the world measured by square footage. These data centers
power the need astounding amount of information used for telecommunications, cloud computing, and financial firms.
These hyperscale sites are some of the biggest data centers around the world due to the major investments from
companies like Google, Facebook, and Microsoft.

Top10 > 400 Ksqft

#1: Microsoft- Chicago, lllinois

Reigning in at number one on our list for biggest data centers is Microsoft. One of
the largest data centers ever build so far but also being the most unusual. The two
story building uses 40-foot shipping containers to house their web servers and uses
the second story for the traditional raised-floor data center space.

700,000 square feet

#2. Apple- Maiden, North Carolina

- Just barely placing over Google and Microsofts second facility, Apples is number two
j on our list. The data center itself sits on 183 acres of land that Apple purchased to




Perspectives on Hyperscalers

Perspectives on Hyperscale

A large-scale national supercomputer
costs hundreds of millions of dollars

SCE N ML

over $1 billion each year.

Four spent over $10 billion in 2021.
Two spent over $20 billion.

Hyperscale companies spen
over $12 billion on Al last year alone




VENDORS / SYSTEM SHARE 500

Others, 35, 7%

Atos, 42,9%
NEC, 11, 2%

y o
Fujitsu, 14, 3% Dell EMC, 17, 3%

China Other, 7, 1% \
NN\ ,,_—/-—- IBM, 8, 2%
Sugon, 36, 7% <
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VENDORS / PERFORMANCE SHARE 500

Others, 374, 9%
Atos, 254, 6%
NEC, 45, 1%

Fujitsu, 544, 12%

Huawei, 15, 0%

Sugon, 73, 2%
Inspur, 106, 2%
Lenovo, 450, 10%

Penguin Computing, 17, 0% ~Nvidia, 161, 2%

Dell EMC, 111, 3%

IBM, 315, 7%

Sum of Pflop/s, % of whole list



Domination by Hyperscalers

Microsoft Datacenter, Quincy

Financial leverage determines R&D
directions, diminishes the influence of
HPC on future chip and systems design

Developing and building their own

hardware and software infrastructure at a
gigantic scale (TPU, Graviton)

Determine future directions for Intel, AMD
and technology in general

Loss of HPC systems integrators

Attract the best talent




Worldwide Race to Exascale (2019)

Projected Pre-Exascale and Exascale Acceptances 2020-2025

Year China EU Japan us Total
Accepted Installatic
2020 1 pre-exascale | 1 pre-exascale 1 pre-exascale 3-4 ~$750 Million
2021 1 pre-exascale 1 pre-exascale 1 (Post K 1 pre-exascale 4-5 ~$1,900 Million
1 near-exascale Accepted)
2022 1 or 2 exascale 1 near- ? 2 exascale 4-5 ~$1,700 Million
exascale
2023 1 exascale 1 exascale 1 near- 1 or 2 exascale 4 ~$1,500 Million
exascale
{$100 million)
2024 1 exascale 1 exascale ? 2 exascale 4 ~51,400 Million
2025 2 exascale 1 or 2 exascale 1 near- 1 exascale 5-6 ~51,600 Million
exascale
($100 million)

Source: Hyperion Research 2019
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Projected Performance Development 500
(TOP500)
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Costs will Limit Growth of High End HPC
Systems

Future TOP10 systems will cost $750M to $1B
Will require of the order of 20MW
| do not expect a 10 Exaflops HPL system before 2030




1

2 Al/ML for Science

3 Where Will This All Lead to?
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Computing the Protein Universe

We experience seemingly daily
new milestones in machine
intelligence:

Alpha Fold DB of Deep Mind
(Google) predicts more than

200M protein structures, July
28, 2022.

"AlphaFold is the singular and
momentous advance in life
science that demonstrates the
power of AL"

"o 5 »
o~ Y
<02 AlphaGo XJI\
o\ \
https://www.nature.com/articles/d41586-022-02083-2
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HPC is essential for progress in large scale Al
300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)
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Training Costs of ML Models over Time

(from Sevilla et al. arXIV2202.05924v2 )

Training compute (FLOPs) of milestone Machine Learning systems over time
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Figure 3: Trends in training compute of n102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.
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These Computing Requirements sparked a high level of
Interest in Architectures and Systems for ML

« Explosion of VC interest in chip start-ups

* More than 45 start-ups are working on chips that
can power tasks like speech and self-driving cars

« US VC are investing >$4B in start-ups

« SambaNova ($1.2B), Groqg ($400M), Cerebras
($250M) are large players in this field

I BERKELEY LAB



Proliferation of New Companies and
Architectures
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AI CHip Landscape More on https://basicmi.github.io/Al-Chip/
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ALCF Al Testbeds

https://www.alcf.anl.gov/alcf-ai-testbed

Cerebras (CS-2)

Graphcore Habana Grog

Argonne Leadership Computing Facility

Infrastructure of next-
generation machines with
hardware accelerators
customized for artificial
intelligence (Al) applications.

Provide a platform to evaluate
usability and performance of
machine leaming based HPC
applications running on these
accelerators.

The goal is to better
understand how to integrate Al
accelerators with ALCF'’s
existing and upcoming
supercomputers to accelerate
science insights

----------------

From Venkat Vishwanath, ANL, Venkat@anl.gov




Machine Learning

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START (OOKING RIGHT.

https://xkcd.com/
1838




Scientific Machine Learning — DOE ASCR BRN
Workshop 2019

Scientific Machine Learning

What are the opportunities and challenges
of machine learning in complex applications
across science, engineering, and medicine?

Integrate sparse, Support
A heterogeneous, noisy high-consequence

knowledge & incomplete data decisions

Respect physical Bring interpretability Make predictions with
constraints to results quantified uncertainties
6
m BERKELEY LAB

From Karen Wilcox, UT Austin



AI for Science — What’s Next After Exascale
' : ’_ » Over 1,300 scientists participated in four
Al FOR ® 2 town halls during the summer/fall of 2019

”
SCIENCE 3 ' Sl - Rescarch Opportunities in Al

RICK STEVENS

VALERIE TAYLOR ﬂ , * Biology, Chemistry, Materials,
o - v - * Climate, Physics, Energy, Cosmology
i ' : Mathematics and Foundations
Data Life Cycle
Software Infrastructure
Hardware for Al
* Integration with Scientific Facilities

* Modeled after the Exascale Series in 2007
* ASCAC subcommittee Report Sept 2020

https://www.anl.gov/ai-for-science-report

o

8 KATHY YELICK 6
DAVID BROWN '

From Rick Stevens, Al4SS workshop




Al for Science Example Foundation Building Blocks

Biology. ~~._ Materials

Augmented ‘%), Science and Math
Simulations Comprehension

Landscape Phystatics

Chemistry._ Accelerators Experiments
Batteries Dewces "4 Reactors ™, Search Biology
Drugs Simulation Mobility Surrogates Optimize Chemistry
Generative Inverse -.._.2 Decision-
Models Problems ®®: Making
Detector % / Risk
~osmology Spectra Image2Phase Research
\ Simulations 2 Wavstarm Priorities G Assessment
Biodesign Structures 2 :
Matarials B Graphs \ Structured Next Big
Time- Problem

series

From Rick Stevens, Al4SS workshop




Al for Science “SuperGeneral” Models
Al Enabled

Design Workflows - ...materials, polymers, organisms...
(what to make)

Al Enabled

Experimental Workflows - ...self-driving labs, synthesis search...
(how to make it)

Al Enabled . data Sets & Cleaned
 literature Updated s
Scientific Comprehension - . science ‘news” [F — Annotated — Insight’
: « strategy Aggregated
(what it means) - Interpreted

From Rick Stevens, Al4SS workshop




Summer 2022 Workshop Topics

June, July, August

Argonne, Berkeley, Oak Ridge, Livermore, Los Alamos, Sandia

Al for Advanced
Properties Inference
and Inverse Design

Al for Programming
and Ssoftware
Engineering

Al and Robotics for
Autonomous
Discovery

Al for Prediction and
Control of Complex
Engineered Systems

From Rick Stevens, Al4SS workshop

Al Based Surrogates
for HPC

Foundation Al for
Scientific Knowledge
Discovery, Integration
and Synthesis




Summary on Al for Science

Several workshop reports list research directions for AI/ML and how it
can accelerate modeling and simulation:

* surrogate models
 digital twins
* physically constrained models

National Labs bring together team science, large scale collaborations,
and exascale computing experience

« expect Al4SS to develop “grand challenge” type problems
that will set the agenda for the next five years and that can be
approached by large scale models




SciML
Capabilities

Machine
Learning
for Advanced
Scientific
Computing
Research

SciML
Foundations

Machine
Learning
for Advanced
Scientific
Computing
Research

Data-intensive
scientific inference & data analysis

ML-enhanced
modeling & sim

ML-hybrid algorithms and models
for better scientific computing tools

Iintelligent automation
& decision support

automated decision support,
adaptivity, resilience, control

Domain-aware

leveraging & respecting
scienfific domain knowledge

interpretable

explainable & understandable results

Robust

stable, well-posed &
reliable formulations

ML methods for multimodal data
in situ data analysis with ML
ML to optimally guide data acquisition

ML-enabled adaptive algorithms
ML parameter tuning
ML-based multiscale surrogate models

exploration of decision space with ML
ML-based resource mgt & control

optimal decisions for complex systems

physical principles & symmeiries
physics-informed priors
structure-exploiting models

model selection
exploiting structure in high-dim data
uncertainty quantification + ML

probabilistic modeling in ML
quantifying well-posedneass
reliable hyperparameter estimation
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3 Where Will This All Lead to?
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Topics that | did not discuss ...
(but have opinions about)

Quantum computing

End of Moore’s Law

Semiconductors and supply chain

The growth of experimental data and loT




A changing computing landscape challenges us to think
differently about the HPC computing environment

Growth of experimental and observational data and

the need for interactive feedback through real-time Use of advanced data analytics and Al in
data analysis and simulation and modeling simulations as well as for integration of
multimodal data sets

GANs used to construct i
surrogate models for
creating weak lensing
convergence maps

The proliferation of accelerators
and new technologies

Nyx simulation of Lyman alpha forest
Credit: P. Nugent, D. Bard

From Katie Antypas et al.



NERSC has addressed the paradigm shift in the way we design,

configure and operate HPC systems
Updated! NERSC-10 CD-0

. . achieved Sept. 2021
Users require an integrated ecosystem that
supports new paradigms for data analysis with real- morsionra Doy of
time interactive feedback between experiments
and simulations. Users need the ability to search,
analyze, reuse, and combine data from different
sources into large scale simulations and Al

models.

() s | of
WENERGY |s

NERSC-10 Mission Need Statement: The
NERSC-10 system will accelerate end-to-end
DOE SC workflows and enable new modes of
scientific discovery through the integration of
experiment, data analysis, and simulation.

y U.S. DEPARTMENT OF Ofﬂce Of

m From Katie Antypas et al. 43 BERKELEY LAB @ ENERGY  scierce




NERSC-10 Architecture: Designed to support complex

simulation and data analysis workflows at high performance
= /' ) Platform "
3 2 % Storage o %
. £ S o
. , ) Q 9 Compute 2
NERSC-10 will provide on-demand, dynamically § ) O ° Nodes 2
composable, and resilient workflows across £ \J
heterogeneous elements within NERSC and extending E
to the edge of experimental facilities and other user 0O- NERSCINSHVE
endpoints o HPSS Community ||Spin-Workflow
E Archive ||File System|| Services
Complexity and heterogeneity managed using (/5] Data Xfer
complementary technologies ﬁ
e Programmable infrastructure: avoid downfalls of =

one-size-fits-all, monolithic architecture
e Al and automation: sensible selection of default
behaviours to reduce complexity for users

U.S. DEPARTMENT OF ofﬂce Of

L5 From Katie Antypas et al. 44 Bl sereetev e @ ENERGY oo

Bringing Science Solutions to the World




The new HPC environment needs ...

« a catchy name (think back how “grid” stimulated research)

 a different set of benchmarks (focus on workflow and
productivity)

- a different vendor relationship (not a single integrator)

* long term development cycle (not fixed milestones and a
five year procurement effort)

Office of

(}7 U.S. DEPARTMENT OF
W ENERGY science

NERSC 45 BERKELEY LAB



And what about the “cloud”?

* National Labs have a mission to maintain a national
capability

*  We cannot allow the national R&D capability for HPC and
computational science being taken over by commercial
Interest

« And it will be difficult to accomplish the tight integration
with the cloud vendors

Office of

{}7 U.S. DEPARTMENT OF
L0 EN ERGY Science

&/

SR 46 BERKELEY LAB
Bringing Science Solutions to the World
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