A Retrospective Look at SPEC Benchmarking

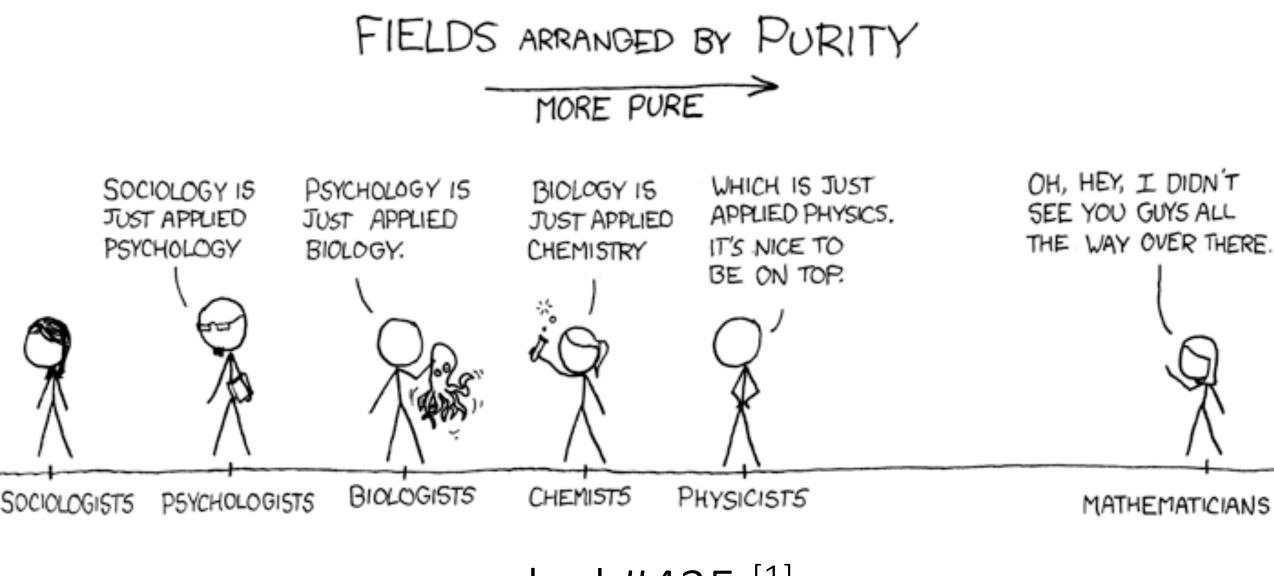
Including: lessons learned

Prepared for: ModSim 2022 Workshop on Modeling & Simulation of Systems and Applications Hosted by Brookhaven National Laboratory

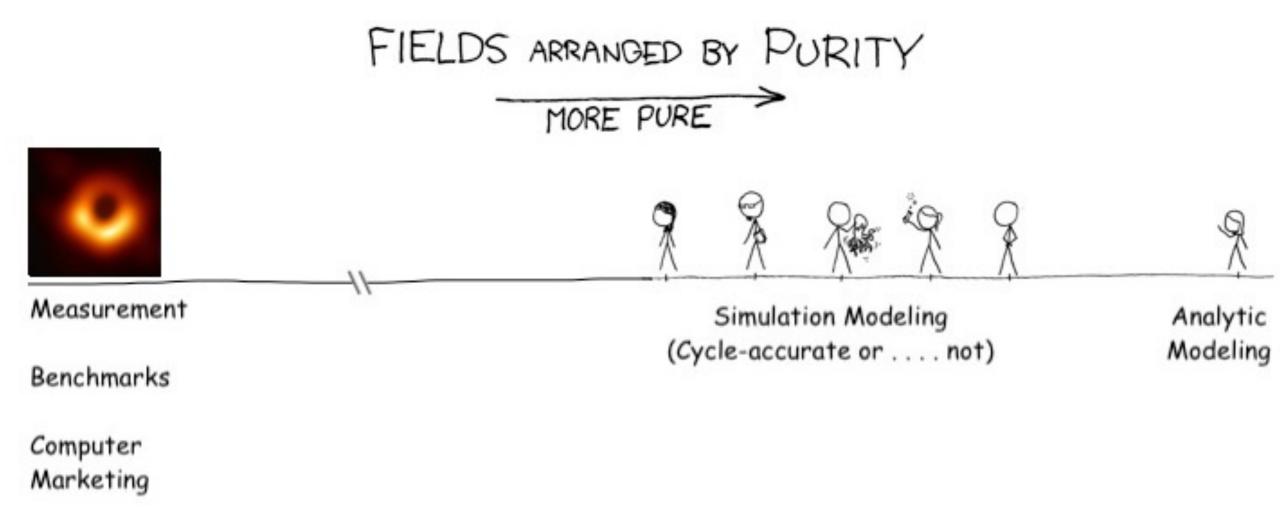
> John L. Henning Performance Engineer, Oracle Corporation Secretary, SPEC CPU Subcommittee

> > August 2022

A Retrospective Look at SPEC Benchmarking


Wait, what? The modeling people invited a measurement guy?

Including: lessons learned


 Prepared for: ModSim 2022
 Workshop on Modeling & Simulation of Systems and Applications Hosted by Brookhaven National Laboratory

> John L. Henning Performance Engineer, Oracle Corporation Secretary, SPEC CPU Subcommittee

> > August 2022

xkcd #435 ^[1]

Why SPEC?

- Goal: an ounce of honest data is worth a pound of marketing hype.^[2]
- Even if 1970s and 1980s benchmarkers are honest, **comparable** measurements are a lot harder than measurements.
- Case study: a 1985 performance guide. [3] [4]
 - 164 glossy, typeset pages
 - Allegedly "Internal Use Only"

Instruction timing for 7 different CPU models

10 pages of detailed comparisons

		Table 4-2 • Instructi High-End		ion Timings Affected by FPA: FPA ON Systems Relative to Previous Model				
Instruction		Raw Speed	Speed Relative to Previous Model	Raw Speed	Speed Relative to Previous Model	Raw Speed	Speed Relative to Previous Moo	
F_floating_ ADDF2 ADDF3 MULF2 SUBF3 DIVF3 POLYF	Reg, Reg Reg, Reg, Reg no alignment shift Reg, Reg Reg, Reg, Reg alignment shift = 9 Reg, Reg, Reg (4TH ORDER)	0.160 0.241 0.321 0.241 1.367 3.451	4.906 5.091 3.763 5.012 3.388 2.755	0.522 0.786 0.803 0.788 3.06 6.30	1.533 5 1.511	1	7 1.0 08 1.9 08 1	, /
D_floating_ ADDD2 ADDD3 MULD2 SUBD3 DIVD3 POLVD	Reg, Reg Reg, Reg, Reg no alignment shift Reg, Reg Reg, Reg, Reg alignment shift = 9 Reg, Reg, Reg (4TH ORDER)	0.402 0.564 1.04 0.56 5.30 SPEC Retrospective	4 4.28 5 3.26 3 4.64 9 1.6	4 1.4 3 2.48 1 69 5	459 1.6 .270 1. .593 1 5.878 1	04 556 502 .643 1.507 1.506	1.409 2.416 3.410 2.617 8.861 17.360	1.0 1.0 1.0 1.1

Instruction timing for 7 different CPU models

10 pages of detailed comparisons

But . . .

- Only within that vendor's systems.
- The benchmark is not public.
- The benchmark is in assembler.

Table 4-2 • Instruction Timings Affected by FPA: FPA ON High-End Systems Relative to 'Previous Model							Speed		
Instruction	and the second s	Raw Speed	Speed Relative to Previous Model	Raw Speed	Speed Relative to Previous Model	Raw Speed	Speed Relative to Previous Model	Raw Speed	Relative Previous M
F_floating ADDF2 ADDF3 MULF2 SUBF3 DIVF3 POLYF	Reg, Reg Reg, Reg, Reg no alignment shift Reg, Reg Reg, Reg Reg alignment shift = 9 Reg, Reg, Reg (4TH ORDER)	0.160 0.241 0.321 0.241 1.367 3.451	4.906 5.091 3.763 5.012 3.388 2.755	0.522 0.786 0.80 0.78 3.0 6.3	1.561 3 1.504 48 1.533 55 1.511	1	1.0 8 1.0 08 1.0		9.0.0 8.0
D_floating_ ADDD2 ADDD3 MULD2 SUBD3 DIVD3 POLYD	Reg, Reg Reg, Reg, Reg no alignment shift Reg, Reg Reg, Reg alignment shift = 9 Reg, Reg, Reg (4TH ORDER)	0.402 0.564 1.04? 0.56 5.30 6.5?	4.28 5 3.20 3 4.6 9 1.6	4 1 53 48 669	1.593 1 5.878 1	01 1	1.102	1.0 1.0 1.0 1.0 1.0 1.0	2.406 2.632 4.676 2.626 12.808 36.365
ADDG2 ADDG3 MULG2 SUBG3 DIVG3	Reg, Reg Reg, Reg, Reg no alignment shift Reg, Reg Reg, Reg, Reg alignment shift = 9 Reg, Reg, Reg (4TH ORDER)	0. 5.	572 23 045 26 571 2 158 1	.159 5.594 8.409 7.506 10.190 20.721	9.282 8.824 19.603 10.293 34.799 101.913	1.523 1.529 1.514 1.526 1.510 1.507	14.134 13.496 29.687 15.706 52.560 153.565	0.1	23.8 23.9 48 24 8 24 8 24

• Customers do not know whether their applications use fast or slow instructions.

"Industry Standard" Applications

Excerpts [no ellipses markings]

- industry-standard FORTRAN benchmarks are described in Table 6-13. Several have been altered to reduce variability.
- Harris Test is an industry-accepted benchmark that exercises features commonly found in APL programs. Many vendors have advertised results. Because data arrays are often limited in these advertisements, be aware that they may not accurately represent performance.
- IFTEST and LITTL have zero elapsed time. FORTRAN version 4 detects "dead code" yielding zero elapsed runtime.

"Industry Standard" Applications

Not in assembly, and claimed to be widely available.

But ...

- Unclear which versions were used.
- Source code was changed. The exact changes are unclear.
- Dead code is present.

Transaction processing

- 40 pages of detail about orders, inventory, sales, receiving.
- Enormous effort building RTE (remote terminal emulators), workload, systems under test.

But . . .

- Compares only a single vendor's systems.
- Benchmark sources are not available.

Whetstone and Dhrystone

- References were provided to specific source versions.
- Dhrystone includes "run rules", reducing ambiguity.

Whetstone and Dhrystone

- References were provided to specific source versions.
- Dhrystone includes "run rules", reducing ambiguity.

But . . .

- Both had several versions, and advertisements were not always clear about which was used.
- Both were "synthetic" collections of program fragments.
- Dhrystone did not have a rule enforcement mechanism.

SPECmark – lessons learned vs. predecessors

- Start from real application programs, which are more meaningful than instruction times and synthetic kernels
- In order to enable comparisons:
 - Require full disclosure of test conditions

guration losure 225.2 1800 552.8	3.8 1.1 8.3 11.2 11.2	HardwareModel Number:SPARCstation 330CPU:25 MHz CYC7C601 (IU)FPU:25 MHz SPARC FPC/FPUCache Size:128KB (I+D)Memory:32 MBDisk Subsystem:327 MB, SCSI diskNetwork Interface:EthernetSoftware
225.2 1800	8.3 11.2	CPU:25 MHz CYC7C601 (IU)FPU:25 MHz SPARC FPC/FPUCache Size:128KB (I+D)Memory:32 MBDisk Subsystem:327 MB, SCSI diskNetwork Interface:Ethernet
1800	11.2	Memory: 32 MB Disk Subsystem: 327 MB, SCSI disk Network Interface: Ethernet
		Disk Subsystem: 327 MB, SCSI disk Network Interface: Ethernet
552.8	11.2	Network Interface: Ethernet
		Software
87.7	12.6	O/S Type and Rev: SunOS 4.0.3
314.7	14.4	Compiler Rev: Sun Fortran 1.2
232.9	13.0	Other Software: None
351.5	7.5	File System Type: SunOS 4.0.3 Firmware Level: ROM Rev 3.0
343.7	11.3	System Tuning Parameters: None in use Background Load: None System State: Single User
	351.5	351.5 7.5

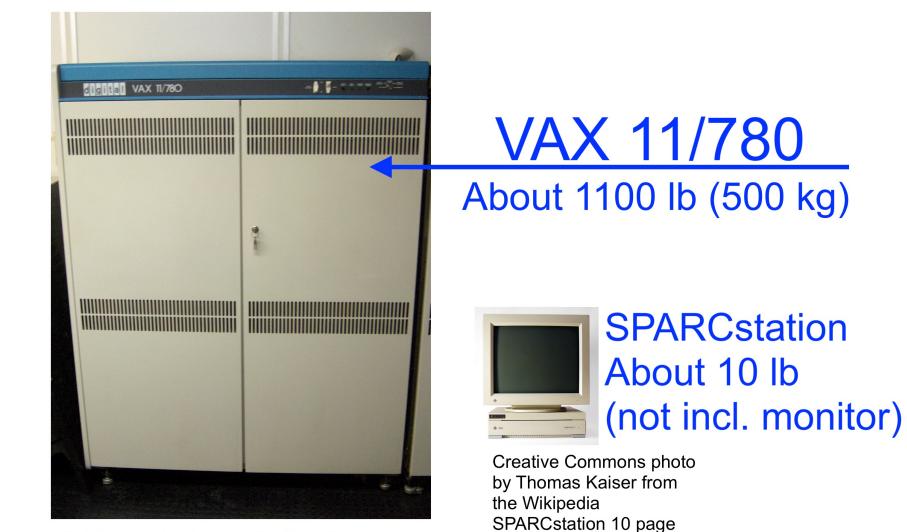
SPEC Benchmark Release 1.0 Summary

SPECmark – lessons learned vs. predecessors

- Start from real application programs, which are more meaningful than instruction times and synthetic kernels
- In order to enable comparisons:
 - Require full disclosure of test conditions
 - Require that everyone test the same source code and data.
 - Specify run rules.
 - Review each others' rule compliance.
- Validate program output

SPECmark – lessons learned vs. predecessors

- Start from real application programs, which are more meaningful than instruction times and synthetic kernels
- In order to enable comparisons:
 - Require full disclosure of test conditions
 - Require that everyone test the same source code and data.
 - Specify run rules.
 - Review each others' rule compliance.
- Validate program output


"I can make it run as fast as you like if you remove the constraint of getting correct answers."

SPEC met with rapid success

 By 1995, result publications included: Bull, CDC, Compaq, Cray, Dansk, Data General, DEC, Gateway, Hitachi, HAL, HP, IBM, Intel, Intergraph, Micronics, Motorola, Pyramid, SGI, Siemens-Nixdorf, Solbourne, Sun, Tricord, Unisys ^[5]

 ISCA '95: Proceedings Of The 22nd Annual International Symposium On Computer Architecture: 16 papers used SPEC benchmarks ^[6]

Not to mention that it was fun!

Public domain photo by Emiliano Russo from the Wikipedia VAX-11 page SPECmark showed that 1989 singlechip systems were ~10x as fast as the 1978 VAX 11/780

SPEC Benchmark R

RESULTS:	SPEC Reference	SPARCstation 330			
Benchmark No. & Name	Time (seconds)	Time (seconds)	SPEC Ratio		
001. gcc	1482	107.6	13.8		
008. espresso	2266	195.9	11.6		
013. spice 2g6	23951	2152.6	11.1		
015. doduc	1863	225.2	8.3		
020. nasa7	20093	1800	11.2		
022. li	6206	552.8	11.2		
023. eqntott	1101	87.7	12.6		
030. matrix300	4525	314.7	14.4		
042. fpppp	3038	232.9	13.0		
047. tomcatv	2649	351.5	7.5		
Geometric Mean	3867.7	343.7	11.3		

Number of Published Results – SPEC CPU^[7]

- 958 SPEC CPU 92
- 2,574 SPEC CPU 95
- 7,654 SPEC CPU 2000
- 48,381 SPEC CPU 2006
- 28,357 SPEC CPU 2017 as of Aug-2022

SPEC also published benchmark results for: file servers web servers virtualization mail servers

- 142 SPEC SFS 93
- 506 SPEC SFS 97
- 120 SPEC SFS 2008
 - 52 SPEC SFS 2014
 - 29 SPECstorage Solution 2020
 - 35 SPECvirt_sc 2010
 - 59 SPECvirt sc 2013
 - 1 SPECvirt Datacenter 2021

- 231 SPECweb 96
- 371 SPECweb 99
- 100 SPECweb 2005
 - 7 SPECweb 2009

- 18 SPECmail2001
 - 2 SPECmail2008
- 5 SPECmail2009

SPEC also published Java benchmark results

- 96 SPECjvm 98
- 11 SPECjvm 2008
 - 4 SPECjms 2007

- 14 SPECjAppServer 2001
- 37 SPECjAppServer 2002
- 95 SPECjAppServer 2004
- 50 SPECjEnterprise 2010

- 366 SPECjbb 2000
- 761 SPECjbb 2005
- 90 SPECjbb 2013
- 695 SPECjbb 2015

SPEC also published benchmarks for: Software Development Environment High Performance Computing Power

- 30 SPEC SDM 94
- 60 SPEC HPC 96
- 104 SPEC HPC 2002
- 87 SPEC HPC 2021

175 SPEC OMP 2012
617 SPEC MPI 2007
135 SPEC ACCEL 2014

827 SPECpower_ssj2008

Wildly ambiguous

Thus for over 25 years, it has been wildly ambiguous to refer to:

- "SPEC results"
- "SPEC95"
- "SPEC2000"

The correct form is: SPEC <benchmark> <year>

Wildly ambiguous

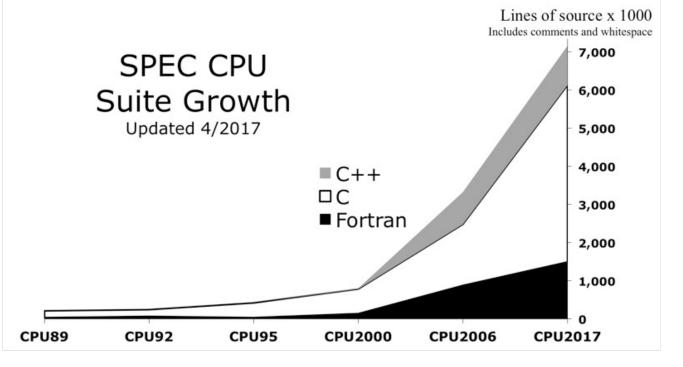
Thus for over 25 years, it has been wildly ambiguous to refer to:

- "SPEC results"
- "SPEC95"
- "SPEC2000"

The correct form is: SPEC <benchmark> <year>

Lesson learned: nobody forgets your childhood nickname.

SPEC CPU Further Evolution / Lessons Learned


Prefer real apps. SPECmark89 started this; it expanded with each subsequent suite.

Read input data.

SPECmark89 had some programs where the compiler could see everything.

Centralize all user changes to 1 file. In 1989, there were many Makefiles

Full disclosure is good. Fuller is better. Requirements were added to disclose more detail, and several kinds of automatic disclosure were added. ^[8]

Lessons specifically from SPEC CPU 2017

- As noted by Professor Lizy John^[9], there was an 11-year gap between CPU 2006 and SPEC CPU 2017.
- What took so long?

Wait of a Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?

Reena Panda[†], Shuang Song[†], Joseph Dean, Lizy K. John The University of Texas at Austin reena.panda@utexas.edu, songshuang1990@utexas.edu, jd45664@utexas.edu, ljohn@ece.utexas.edu

Lessons learned from SPEC CPU 2017 (1)

Pick parallelization targets early

• SPEC CPU 2017 evaluated benchmark candidates that used:

Unix pthreadsWindows threadsOpenMPMPIIntel Threading Building Blocks

These led to continual arguments, such as:

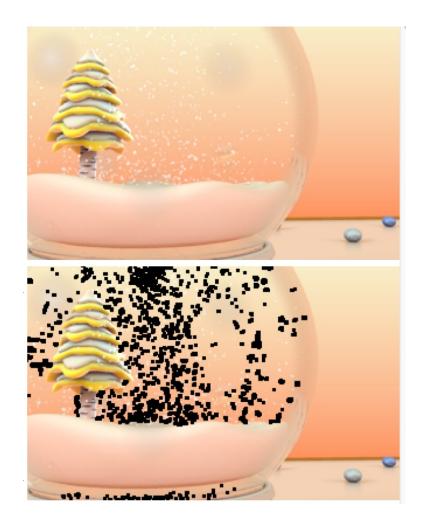
"We can easily build a shim layer." "System X can't run benchmark Y" "Do we <u>require</u> parallelism? "It's not so easy" "Who cares?" "For which benchmarks?"

Lessons learned from SPEC CPU 2017 (2)

(re-learned) Kernels are less interesting than real apps

- One author submitted 11 small candidates
- None survived the final cut

Lessons learned from SPEC CPU 2017 (3)


Specify resources (time / memory) up front

- There were too many arguments about how-long-is-too-long.
- And how-big-is-too-big.
- And how these are to be measured.

Lessons learned from SPEC CPU 2017 (4)

Figure out validation early

- Multiple benchmark candidates had no validation method.
- SPEC's image validator^[10] implements SSIM, which solved the problem for several benchmarks.

Lessons learned from SPEC CPU 2017 (5)

(re-learned) Portability is hard

- One author submitted 17 candidates claiming that all were highly portable.
- The basis for this claim turned out to be that the benchmarks had indeed been tested on multiple hardware types, but:
 - using only one compiler
 - on one operating system

Lessons learned from SPEC CPU 2017 (6)

(re-learned) Licenses are important

- Each version of SPEC CPU has drawn on the open source community, starting with SPECmark89 and 001.gcc from the Free Software Foundation
- A license review near the end of the SPEC CPU 2017 development cycle turned up a few surprises, such as:

```
regexp.c
Copyright (c) 1984 AT&T All Rights Reserved THIS IS
UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T The copyright
notice above does not evidence any actual or intended
publication of such source code.
```

A different regexp solution was found. [11]

Lessons learned from SPEC CPU 2017 (7)

Recurring benchmarking pitfalls will recur

In addition to the various benchmark candidate pitfalls mentioned above, some other recurring problems include:

- A benchmark candidate measures something different than expected.
- The benchmark candidate is a library with hundreds of functions. The workload exercises 2 of them.
- Minor FP differences unexpectedly cause differing work.

A list of good^[12] and bad^[13] benchmark characteristics was published with the release of SPEC CPU 2017.

Lessons learned from SPEC CPU 2017 (8)

Subjective criteria are inevitable; don't wait until the end to expose them

What is most important among these?

Application domain Large user base Well-known application State of the art algorithm Not "just a toy" program Robust code Compiler challenge Modern code Exercises main memory Non-peaky profile Expert author Avoids repeating identical work Easily ported to new systems Not previously in a SPEC CPU suite

Applied lessons - SPEC CPUv8 Search program^[14] <u>www.spec.org/cpuv8</u>

• Requires both objective and subjective criteria at each step

	Step 3 Provide workloads and demonstrate profile (\$1500 or \$2500
	3a Test workload
	3b Train workload
Objective criteria	3c SPECrate® reference workload (Integer or Floating Point)
	3d SPECspeed® Floating Point reference workload
	3e SPECspeed® Integer reference workload
	3f Profile
	3g Step 3 awards
Subjective ——	3h Movement to the next step

Applied lessons - SPEC CPUv8 Search program <u>www.spec.org/cpuv8</u>

- Requires both objective and subjective criteria at each step
- Specifies parallelization technologies
- Specifies which suites require parallelism.
- Specifies run time, memory size, and how these are measured.
- Requires early review of licenses

Speaking of the SPEC CPUv8 Search program
<u>www.spec.org/cpuv8</u>

- It's not too late
- Fill out your entry form by 12-Sep-2022
- (You do not have to finish all the steps by 12-Sep! Just get the process started.)

References

[1] R. Munroe, "Purity", https://xkcd.com/435/

[2] Standard Performance Evaluation Corporation, "SPEC Organizational Information", <u>https://www.spec.org/spec/</u> section "Background".

[3] The material in the next several slides is based on J. L. Henning, "How Many VAXes Fit in the Palms of Your Hands?," in IEEE Micro, vol. 41, no. 6, pp. 140-143, 1 Nov.-Dec. 2021, doi: 10.1109/MM.2021.3112911. The author's pre-production copy is available at https://www.spec.org/cpu2017/publications/HowManyVAXesFitInThePalmsOfYourHands-AuthorVersion.pdf

[4] As explained at [3], a full citation for the 1985 Performance Summary is not provided because it is marked as internal use only. In practice, considering the amount of effort that went into its production, it seems likely that some customers were given copies.

[5] The list of vendors is based on SPEC results from the early 1990s as archived at https://netlib.org/performance/html/spec.html

[6] Association for Computing Machinery, Proceedings of the 22nd annual international symposium on Computer architecture, 1995, New York, NY, USA. Free access at https://dl.acm.org/doi/proceedings/10.1145/223982

[7] The result counts are based the totals reported for each benchmark as linked from Standard Performance Evaluation Corporation, "Published SPEC Benchmark Results", <u>https://www.spec.org/results.html</u> and "Retired Benchmarks", <u>https://www.spec.org/retired.html</u>. The CPU92 counts are from counting the archived pages at [5].

[8] See for example Standard Performance Evaluation Corporation, "SPEC CPU2017 Run and Reporting Rules", <u>https://www.spec.org/cpu2017/Docs/runrules.html</u>, section 4.

[9] R. Panda, S. Song, J. Dean and L. K. John, "Wait of a Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?," 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 271-282, doi: 10.1109/HPCA.2018.00032.

[10] Standard Performance Evaluation Corporation, "SPEC CPU 2017 Utilities", https://www.spec.org/cpu2017/Docs/utility.html section "imagevalidate"

[11] Standard Performance Evaluation Corporation, "SPEC CPU 2017 Licenses", https://www.spec.org/cpu2017/Docs/licenses.html

[12] Standard Performance Evaluation Corporation, "SPEC CPU 2017 Overview / What's New?", https://www.spec.org/cpu2017/Docs/overview.html

[13] Ibid, section Q3.

[14] Standard Performance Evaluation Corporation, "SPEC CPU v8 Benchmark Search Program", <u>https://www.spec.org/cpuv8/</u>