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The Exascale Computing Project

• Ensure that the first US exascale
supercomputers will be immediately productive
− Provide applications, software, and user support, 

not hardware procurements
• Very large US Department of Energy initiative

− US$1.8 billion spread over the years 2016–2023
− Involves DOE labs, academia, and industry

• Goals
− Advancing scientific discovery
− Strengthening national security
− Improving industrial competitiveness
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Why Include Modeling and Simulation in ECP?

• Forecast performance (and performance bottlenecks) to future architectures
− Complement efforts by Application Development teams to analyze and improve 

performance on current platforms
− Highlight opportunities and challenges for scientific applications

• Inform post-exascale system design
− Identify features that could help or hinder the performance of ECP applications

• Provide deeper understanding of observed performance on current exascale
testbeds

• Ensure modeling and simulation efforts emphasize applications and 
architectures of interest to DOE
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Hardware Evaluation
Scott Pakin, LANL

Memory Technologies
Maya Gokhale, LLNL

Simulate/analyze alternative 
memory types and 
configurations

Analytical Modeling and Node 
Simulation
Sam Williams, LBNL

Rapidly predict/explain 
application performance, even 
on future hardware, with 
particular focus on on-node 
performance

Interconnect Simulation
Scott Hemmert, SNL

Simulate extreme-scale 
networks to estimate relative 
performance of future 
networks

ECP Modeling and Simulation Structure

Memory Node/system Network

Total of ~40 
people and ~1% 
of ECP’s budget



810-Aug-2022

Outline

• The Exascale Computing Project
• Modeling and simulation
• Retrospection



910-Aug-2022

Impact of Tighter CPU-GPU Integration

• What would be the effect of 10x faster communication between the CPU and 
GPU?
− On-die versus over an I/O bus

• Baseline: 100μs kernel-launch latency and 8–16 GB/s PCIe bandwidth, 
including software overheads
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Impact of Tighter CPU-GPU Integration (cont.)

• Findings
− Order-of-magnitude improvements in CPU-GPU integration will likely yield only a 30% 

increase in application-level performance relative to baseline (100µs, 16 GB/s) for 
most applications

− Outliers approaching 2x 
− Advantage: No substantive application changes

HACC LAMMPS OpenMC Rodinia NW
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Ratio of CPUs to GPUs

• Given limited chip area, what CPU:GPU ratio 
gives the best performance?

• Limit scope of study to number of Skylake-
equivalent CPUs to V100-equivalent GPUs

• Find ratio that achieves 90% of potential 
application performance
− Arbitrary but caps exponential gains from 

OpenMP, MPI GPU sharing, and communication 
artifacts

• Findings
− The majority of applications studied require only 

one or two CPU cores per GPU
− Makes practical single-socket integrated solutions

BerkeleyGW, Epsilon and 
Sigma modules
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Memory-Locality Analysis

• MemLeap tool: Analyze spatial 
and temporal locality in GPU 
kernels

• Built atop NVIDIA’s NVBit
binary-instrumentation 
framework

• Captures accessed memory 
addresses by each thread in 
each warp then injects analysis 
code to measure architecture-
independent locality metrics
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Memory-Locality Analysis (cont.)

• Finding: Spatial and temporal locality can vary substantially even across 
multiple invocations of the same kernel (on different inputs)

• The following graphs plot spatial locality (left) and temporal locality (right) of 12 
iterations two highly input-dependent kernels from a breadth-first search

• Implications for how well a program can exploit the memory subsystem
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Performance Sensitivity to Failed Network Links

• All modern networks can route around failed links
• Comes at a performance cost

− Less aggregate bandwidth is available
− Previously independent flows may contend for 

certain links
− More router hops may be required for a message to 

get to its destination
• Studied two network topologies: Dragonfly and 

HyperX
− Both simulated at 30,000+ nodes

• Studied three communication patterns: 27-point 
stencil, KBA sweeps, and LQCD communication
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Image credit: Wikipedia

HyperX topology
Image credit: Ahn et al., SC’09
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Performance Sensitivity to Failed Network Links (cont.)

• Findings
− Only the 27-point stencil showed 

sensitivity to failed links
− HyperX is more sensitive to failed links 

than Dragonfly (may be based on 
some pessimistic assumptions, 
though)

− Systems can withstand at least 5% link 
failure before the throughput of the 
machine is noticeably affected, even 
for the 27-point stencil

− Larger jobs are more sensitive to link 
failures than smaller jobs

− Lower global/bisection bandwidth 
increases sensitivity to failed links

27-point stencil on a half-bisection-bandwidth HyperX
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Co-scheduling CPU and GPU Jobs

• Architectural model
− Integrated CPUs and GPUs sharing high-bandwidth memory

• Hypothesis
− Neither CPU codes nor GPU codes alone can saturate HBM bandwidth 
− Co-scheduling CPU-intensive applications and GPU-intensive applications can 

increase throughput

Not Co-Scheduled
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ≈ 𝑊𝑊

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ≈ 𝑊𝑊

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 1 + 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝑊𝑊
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 1 + 𝛿𝛿𝐺𝐺𝐶𝐶𝐶𝐶 ⋅ 𝑊𝑊

CPU

GPU

CPU
GPU

Co-Scheduled
Legend

CPU Input Deck
GPU Input Deck
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Co-scheduling CPU and GPU Jobs (cont.)

• Slowdown calculated by normalizing to standalone run times
• CPU input decks ran on 36 ranks, and GPU input decks ran on 2 GPUs
• Applications experienced 1–52% slowdown when co-scheduled

Example: 
Sw4Lite on 
the CPU co-
scheduled 
with WarpX 
on the GPU. 

SW4Lite 
slowed by 
52% and 
WarpX 
slowed by 
27%.
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Successes

• Good potential for identifying future performance opportunities and bottlenecks
− Follow hardware trends and use ModSim to analyze application impact

• Cross-laboratory teams support different approaches to answering technical 
questions

• Lots of interesting analyses and findings
− Starting to form a picture of how scientific applications may perform on future 

hardware
− Helpful that ECP includes a proxy-applications component

• Tool development/enhancement
− Almost all of which is now open-source

Having smart people work on challenging problems generally yields positive 
outcomes
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Struggles

• Better integration across the Memory, 
Node, and Network teams would have 
been nice
− Ideal would be to have everyone 

approach the same performance 
question from different angles and using 
different tools and methodologies

− In practice, cycle-accurate simulators 
and analytical performance models, for 
example, handle different application 
scales, work at different levels of 
accuracy, and answer different 
performance questions

− Some challenges herding cats played a 
role, too
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Struggles (cont.)

• ModSim analyses not widely valued by the application teams
− “There’s no point in our altering our applications based on your predictions.  We 

optimize for today’s platforms, and if anything changes, we simply re-optimize for 
that.”

− Similar story for ModSim explanations of current performance: hardware counters are 
ground truth; everything else is based on potentially untrustworthy assumptions

− A bit more appreciation came from the DOE supercomputing facilities in the context of 
procurement decisions and hardware configuration
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Summary

• The Exascale Computing Project has included a ModSim component, called 
“Hardware Evaluation”, for a number of years

• Pull together expertise in memory, node, and network modeling and simulation 
from across the DOE complex

• Examine potential impacts of hardware trends on ECP application performance
• Successes include analyses and recommendations based on analytical 

modeling and various types of simulations
• Struggles include integration across memory/node/network components and 

garnering trust in our findings
 Important for DOE to include ModSim in large research efforts because there is 

always a “next” supercomputer for applications to target
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