
Principal Kernel Analysis
A Tractable Methodology to Simulate Scaled GPU Workloads

Authors: Cesar A. Baddouh¹, Mahmoud Khairy¹, Roland Green¹,
Mathias Payer², Timothy G. Rogers¹

²¹

Motivation – Two Facts
1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate

2

Ru
n	
Ti
m
e

Ru
n	
Ti
m
e

Motivation – Two Facts
1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate

3

Ru
n	
Ti
m
e

Motivation – Two Facts
1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate

4

Ru
n	
Ti
m
e

Ru
n	
Ti
m
e

Motivation – Two Facts

5

Ru
n	
Ti
m
e

BERT

Rodinia

Deep-bench

1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate

Ru
n	
Ti
m
e

For orders of magnitude
speed improvement

sampling is necessary.

Related work

6

• A quick survey of the related work

None of these sampling techniques
are the de-facto standard in GPU

arch. exploration

Current Solutions
• Two mainstream options:

• Full simulation (if tractable)
• Execute the first N Billion instructions

7

Current Solutions in practice
• Try to simulate the whole workload

• Not often possible (i.e., no MLPerf)

8

Current Solutions in practice
• Simulate the first 1-5B instructions

• Not great

9

Proposed method
• Take advantage of the GPU/Accelerator programming model

• Natural synchronization points at kernel boundaries

• Within kernels, code performance is generally more uniform than
CPU applications.

• Can we take advantage of these factors?

• Key Objectives:
• As hardware agnostic as possible: want sampling to hold inter-generation
• Avoid application-specific characteristics: want to run everything with zero

tuning.

10

Two key elements
• Select a representative set of kernels

• Contemporary workloads can run millions of kernels
• Perform Principal Kernel Selection (PKS)

• Within kernels, code performance is generally more uniform than
CPU applications

• Leverage this fact: perform Principal Kernel Projection (PKP) of statistics

• Together these form our Principal Kernel Analysis (PKA) solution.

11

12

13

Loads
Stores
Atomics
Number of instructions
Number of thread blocks

Key:
Hardware-agnostic metrics

14

15

16

Proposed Method - Part 1 - PKS

17

• AIM: Reduce the number of
simulated kernels. (i.e., inter-kernel
reduction)

• We profile the program and obtain
hardware-agnostic metrics

• Loads, stores, atomic instructions,
etc., etc.

Proposed Method - Part 1 - PKS

18

• We use PCA + K-Means to group
similar kernels.

• Technique scales to millions of discrete
kernels

• Select one kernel from each group as
the principal kernel, skipping all other
kernels in a group.

• Project the performance of each
group by scaling the performance of
the principal kernel by the number of
kernels in the group.

Group composition

19

• Group composition not homogeneous
• Different groups might contain the same named kernels as other groups

• Example ResNet

Per-Group Kernel Frequency

N
am

ed
-K

er
ne

ls

Proposed Method - Part 2 - PKP

20

• Individual kernels can still be too
long.

• AIM: Reduce the execution time
of long kernels. (i.e., intra-kernel)

• We observed that for some
applications the IPC of a kernel
stabilizes, even for workloads
that would otherwise seem
irregular.

Kernel Stability in Regular Applications

21

Stability in Irregular Applications

22

BFS

Stability Projection

23

• If the kernel is stable, we:
1. Assume:

• IPC is constant
2. Know:

• Number of Instructions remaining
• Number of Thread blocks remaining

• We can project how long it would
take to finish the kernel

• We skip simulating all thread
blocks after we project

Stability Conditions

24

1. Stable IPC
• Coefficient of variance less than

some threshold t

2. Some thread-blocks have
finished
• Different rules depending on

overall number of thread blocks
and occupancy.

Proposed Joint Method - PKA

25

Proposed Method – One more fact
• Detailed profiling has an overhead

• We calculate it to be 10! − 10" slower than silicon.

26

Ru
n	
Ti
m
e

Hierarchical profiling

27

Hierarchical profiling

28

Group 1

Group 2

Group 3

• Perform detailed profiling on the first j kernels where profiling time is
practical. Perform PKS on these kernels.

Hierarchical profiling

29

Group 1

Group 2

Group 3

• Perform lightweight profiling on all the kernels (just get kernel
name, dimensions + layer info for ML workloads)

Hierarchical profiling

30

Group 1

Group 2

Group 3

• We map data from a partial detailed profiling and a complete
lightweight profiling using classification algorithms (i.e., SGD,
MLP)

Methodology

31

• Accel-Sim Simulation framework
• Trace-based simulation framework

integrated on GPGPU-sim.

• Version 1.1

• Run 140+ benchmarks per architecture
• Rodinia,Polybench,Parboil,Cutlass,Deepbe

nch, MLPerf (SSD, ResNet, BERT, 3D Unet,
GNMT)

Accel-Sim: An Extensible Simulation Framework
for Validated GPU Modeling – Khairy et al. - ISCA
2020

Architecture Simulators

• Simulation is commonly used to estimate the effectiveness
of a new architectural design idea.

• The simulation tools used by industry are often not
released for open use.

32

Academic
Simulators

Industrial Designs/
Simulators

Incorrect baseline assumptions
à unrealistic issues or incorrect
conclusions

Accuracy Gap

Research cannot look ahead, if its baseline
assumptions are too far behind

GPU Accelerators are Evolving Rapidly

33

2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp

scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1

cache

Ampere
• mISA sm80
• Sparse tensor

cores
• Asynchronous

copy and barriers
• HBM2

Volta
• mISA sm70
• Scoped

synchronization
• Tensor cores & INT unit
• Independent threads

SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor

cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

How can academic open-source simulators
keep up with industrial designs quickly and

accurately?

Accel-Sim [ISCA’20]
• Accel-Sim introduces a simulation framework to help solve the

problem of keeping simulators up-to-date with contemporary designs.

• Key Results: Modeling and validating against five generations of NVIDIA
GPUs ranging from Kepler to Ampere with correlation > 0.97 in all
instances.

34

GPGPU-Sim 3.x vs Accel-Sim
• Accel-Sim decreases cycle error from 94% to 15%.

35More detailed correlation results can be found in the paper.

PKA Results – Time reduction

36

Results – Time reduction

37

Series Cycle errors w.r.t. silicon

Classical Benchmarks MLPerf
Full Simulation 25% ?? (Not possible)

PKS 27% 21%

PKA 25% 28%

Results

38

Results

39

MLPerf suite

PKA vs. Single iteration in ML Workloads
• Another increasingly popular option is to run a single iteration and

scaling that by the number of iterations in the entire program

• Fast and accurate, but still orders of magnitude slower than PKA

• More involved process, must mark where an iteration starts, etc., etc.
PKA is completely automatic, doesn’t require context.

• Even more manual with sequence/input-dependent workloads like
BERT.

• Could use seqPoints for some SQNN’s, point still stands, more involved, less
automatic.

40

Thanks to the students

41

Mahmoud KhairyCesar A. Baddouh Roland Green

Vs. Current Solutions (error w.r.t. silicon)

42

Series Cycle errors w.r.t. silicon

Classical Benchmarks MLPerf

Full Simulation 25% ?? (Not possible)

PKS 27% 21%

PKA 25% 28%

Questions?

