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Motivation – Two Facts
1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate
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Motivation – Two Facts
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BERT

Rodinia

Deep-bench

1. Cycle-accurate GPU simulation is slow
2. Realistic benchmarks are impossible to fully simulate
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For orders of magnitude 
speed improvement 

sampling is necessary.



Related work
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• A quick survey of the related work

None of these sampling techniques 
are the de-facto standard in GPU 

arch. exploration



Current Solutions
• Two mainstream options:

• Full simulation (if tractable)
• Execute the first N Billion instructions
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Current Solutions in practice
• Try to simulate the whole workload

• Not often possible (i.e., no MLPerf)
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Current Solutions in practice
• Simulate the first 1-5B instructions

• Not great
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Proposed method
• Take advantage of the GPU/Accelerator programming model

• Natural synchronization points at kernel boundaries

• Within kernels, code performance is generally more uniform than 
CPU applications.

• Can we take advantage of these factors?

• Key Objectives:
• As hardware agnostic as possible: want sampling to hold inter-generation
• Avoid application-specific characteristics: want to run everything with zero 

tuning.
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Two key elements
• Select a representative set of kernels

• Contemporary workloads can run millions of kernels
• Perform Principal Kernel Selection (PKS)

• Within kernels, code performance is generally more uniform than 
CPU applications

• Leverage this fact: perform Principal Kernel Projection (PKP) of statistics

• Together these form our Principal Kernel Analysis (PKA) solution.
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Loads
Stores
Atomics
Number of instructions
Number of thread blocks

Key:
Hardware-agnostic metrics
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Proposed Method - Part 1 - PKS
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• AIM: Reduce the number of 
simulated kernels. (i.e., inter-kernel 
reduction)

• We profile the program and obtain 
hardware-agnostic metrics

• Loads, stores, atomic instructions, 
etc., etc.



Proposed Method - Part 1 - PKS
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• We use PCA + K-Means to group 
similar kernels.

• Technique scales to millions of discrete 
kernels

• Select one kernel from each group as 
the principal kernel, skipping all other 
kernels in a group.

• Project the performance of each 
group by scaling the performance of 
the principal kernel by the number of 
kernels in the group.



Group composition
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• Group composition not homogeneous
• Different groups might contain the same named kernels as other groups

• Example ResNet

Per-Group Kernel Frequency
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Proposed Method - Part 2 - PKP
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• Individual kernels can still be too 
long.

• AIM: Reduce the execution time 
of long kernels. (i.e., intra-kernel) 

• We observed that for some 
applications the IPC of a kernel 
stabilizes, even for workloads 
that would otherwise seem 
irregular.



Kernel Stability in Regular Applications
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Stability in Irregular Applications
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BFS



Stability Projection
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• If the kernel is stable, we: 
1. Assume:

• IPC is constant
2. Know:

• Number of Instructions remaining
• Number of Thread blocks remaining

• We can project how long it would 
take to finish the kernel

• We skip simulating all thread 
blocks after we project



Stability Conditions
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1. Stable IPC
• Coefficient of variance less than 

some threshold t

2. Some thread-blocks have 
finished
• Different rules depending on 

overall number of thread blocks 
and occupancy.



Proposed Joint Method - PKA
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Proposed Method – One more fact
• Detailed profiling has an overhead

• We calculate it to be 10! − 10" slower than silicon. 
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Hierarchical profiling
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Hierarchical profiling
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Group 1

Group 2

Group 3

• Perform detailed profiling on the first j kernels where profiling time is 
practical. Perform PKS on these kernels.



Hierarchical profiling
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Group 1

Group 2

Group 3

• Perform lightweight profiling on all the kernels (just get kernel 
name, dimensions + layer info for ML workloads)



Hierarchical profiling
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Group 1

Group 2

Group 3

• We map data from a partial detailed profiling and a complete 
lightweight profiling using classification algorithms (i.e., SGD, 
MLP)



Methodology
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• Accel-Sim Simulation framework
• Trace-based simulation framework 

integrated on GPGPU-sim.

• Version 1.1

• Run 140+ benchmarks per architecture
• Rodinia,Polybench,Parboil,Cutlass,Deepbe

nch, MLPerf (SSD, ResNet, BERT, 3D Unet, 
GNMT)

Accel-Sim: An Extensible Simulation Framework 
for Validated GPU Modeling – Khairy et al. - ISCA 
2020



Architecture Simulators

• Simulation is commonly used to estimate the effectiveness 
of a new architectural design idea.

• The simulation tools used by industry are often not 
released for open use.
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Academic 
Simulators

Industrial Designs/ 
Simulators

Incorrect baseline assumptions
à unrealistic issues or incorrect 
conclusions 

Accuracy Gap

Research cannot look ahead, if its baseline 
assumptions are too far behind



GPU Accelerators are Evolving Rapidly
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2009

Fermi
• mISA sm20
• Caches/Atomics
• Dual warp 

scheduler

2011 2013 2015 2017 2019 2022

Kepler
• mISA sm30
• DP unit
• Dynamic Parallelism
• Dual issue

Maxwell
• mISA sm50
• Subcore model

Pascal
• mISA sm60
• Unified memory
• HBM
• FP16 support
• Streaming l1 

cache

Ampere
• mISA sm80 
• Sparse tensor 

cores
• Asynchronous 

copy and barriers
• HBM2

Volta
• mISA sm70 
• Scoped 

synchronization
• Tensor cores & INT unit
• Independent threads 

SIMT
• Cooperative Groups
• Unified adaptive cache

Turing
• mISA sm75
• New tensor 

cores
• RT-cores
• UDP cores

New machine ISA and architecture designs every 1-2 years!

Hopper
??

We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

How can academic open-source simulators 
keep up with industrial designs quickly and 

accurately? 



Accel-Sim [ISCA’20]
• Accel-Sim introduces a simulation framework to help solve the 

problem of keeping simulators up-to-date with contemporary designs.

• Key Results: Modeling and validating against five generations of NVIDIA 
GPUs ranging from Kepler to Ampere with correlation > 0.97 in all 
instances.
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GPGPU-Sim 3.x  vs Accel-Sim
• Accel-Sim decreases cycle error from 94% to 15%.

35More detailed correlation results can be found in the paper.



PKA Results – Time reduction
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Results – Time reduction
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Series Cycle errors w.r.t. silicon

Classical Benchmarks MLPerf
Full Simulation 25% ?? (Not possible)

PKS 27% 21%

PKA 25% 28%



Results
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Results
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MLPerf suite



PKA vs. Single iteration in ML Workloads
• Another increasingly popular option is to run a single iteration and 

scaling that by the number of iterations in the entire program

• Fast and accurate, but still orders of magnitude slower than PKA

• More involved process, must mark where an iteration starts, etc., etc. 
PKA is completely automatic, doesn’t require context.

• Even more manual with sequence/input-dependent workloads like 
BERT.

• Could use seqPoints for some SQNN’s, point still stands, more involved, less 
automatic.
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Thanks to the students
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Mahmoud KhairyCesar A. Baddouh Roland Green



Vs. Current Solutions (error w.r.t. silicon)
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Series Cycle errors w.r.t. silicon

Classical Benchmarks MLPerf

Full Simulation 25% ?? (Not possible)

PKS 27% 21%

PKA 25% 28%

Questions?


