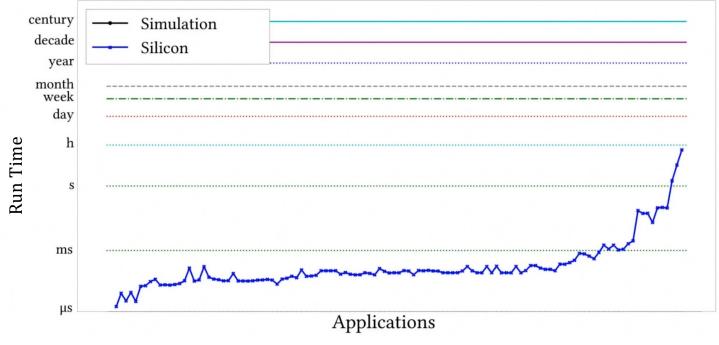
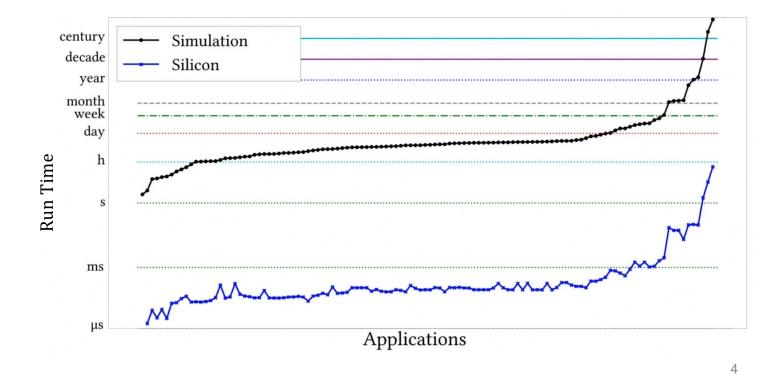
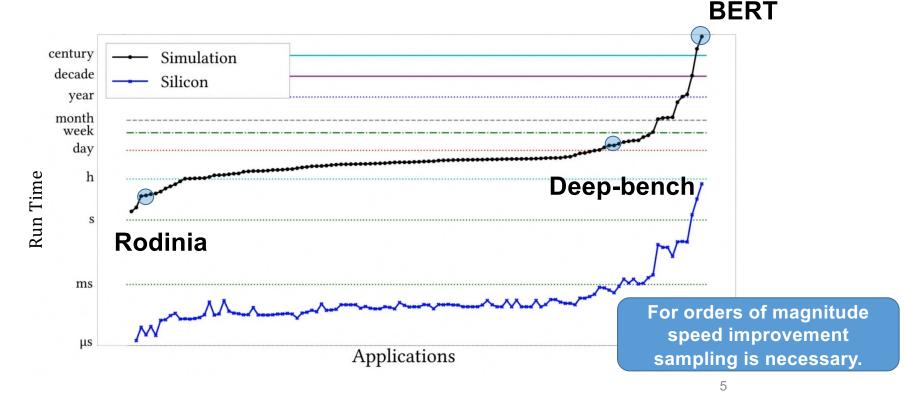

Principal Kernel Analysis A Tractable Methodology to Simulate Scaled GPU Workloads

Authors: Cesar A. Baddouh¹, Mahmoud Khairy¹, Roland Green¹, Mathias Payer², Timothy G. Rogers¹




- 1. Cycle-accurate GPU simulation is slow
- 2. Realistic benchmarks are impossible to fully simulate

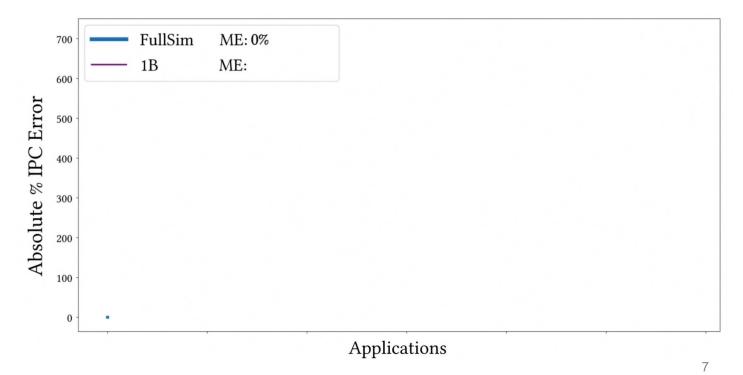

- 1. Cycle-accurate GPU simulation is slow
- 2. Realistic benchmarks are impossible to fully simulate

- 1. Cycle-accurate GPU simulation is slow
- 2. Realistic benchmarks are impossible to fully simulate

- 1. Cycle-accurate GPU simulation is slow
- 2. Realistic benchmarks are impossible to fully simulate

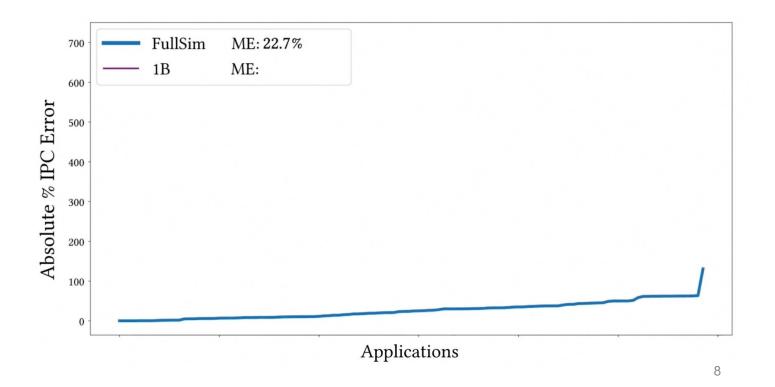
Related work

• A quick survey of the related work

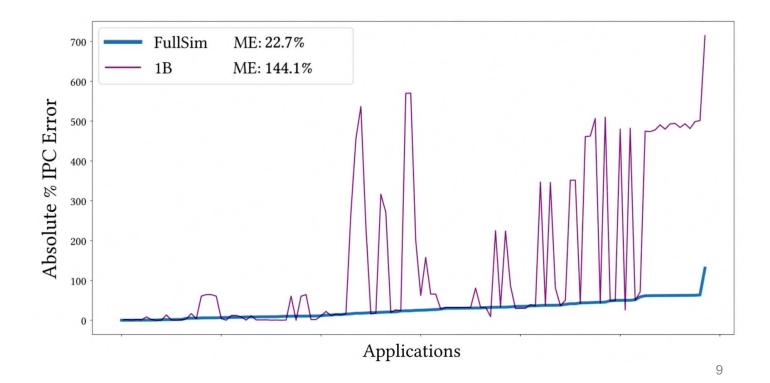

Sampling Methodologies	$\begin{array}{c} \text{Control-Flow} \\ \text{Reduction} \ [24, \ 45], \\ [54, \ 64, \ 66] \end{array}$	Synchronization Regions [13, 22]	GPGPU -MiniBench [67, 68]	GT-Pin[30]	TBPoint [26], Clustering [21]	Principal Kernel Analysis
Threaded	Single	CPU Multi-Threaded	GPU Multi-Threaded	GPU Multi-Threaded	GPU Multi-Threaded	GPU Multi-Threaded
Mechanism	Identify common basic blocks	Inter-barrier regions	Intra-thread-block control flow analysis	Unique kernels & control flow analysis	Thread block reduction [26], kernel clustering	Thread block/kernel reduction
Inter-kernel	NA	NA	Х	\checkmark	\checkmark	\checkmark
Intra-kernel	NA	NA	\checkmark	Х	[26]* Requires full functional simulation	\checkmark
Sampling Clustering	Automated	Automated	Automated	Automated	Hierarchical hand-tuned	Automated
# GPU Workloads	NA	NA	23	25	12	147
Silicon Validated vs Century-Long Full-Simulation	Х	Х	Х	Х	Х	\checkmark

None of these sampling techniques are the de-facto standard in GPU arch. exploration

Current Solutions


• Two mainstream options:

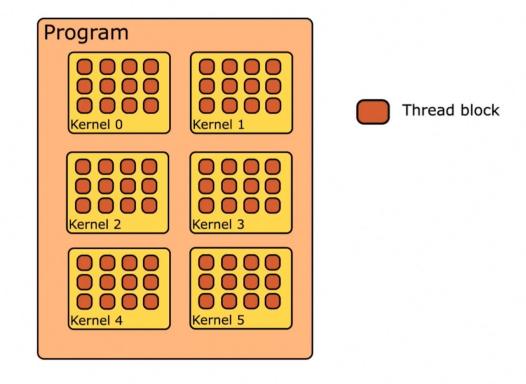
- Full simulation (if tractable)
- Execute the first N Billion instructions

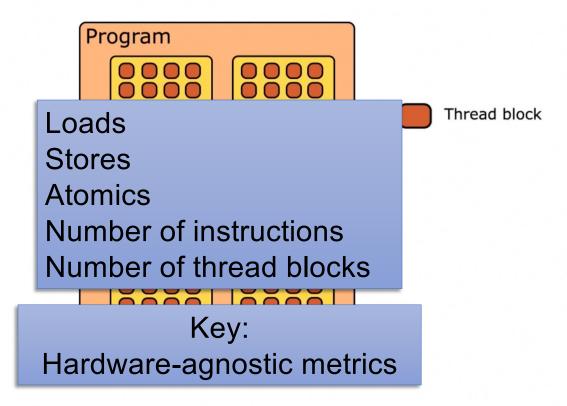

Current Solutions in practice

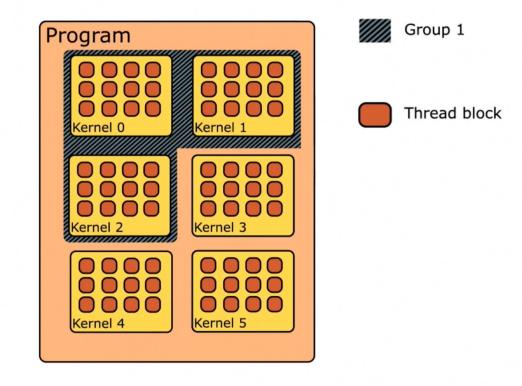
- Try to simulate the whole workload
 - Not often possible (i.e., no MLPerf)

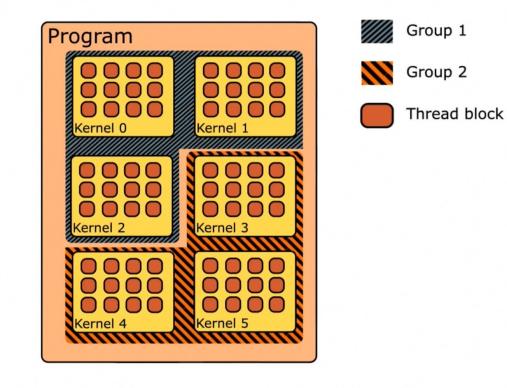
Current Solutions in practice

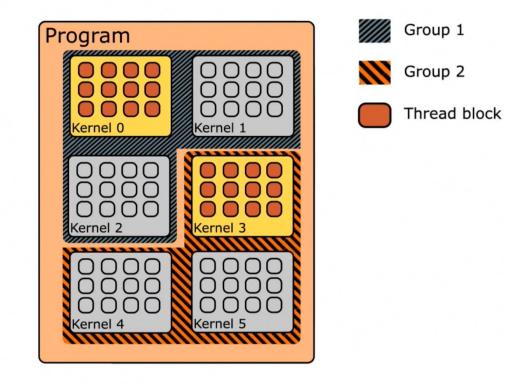
- Simulate the first 1-5B instructions
 - Not great

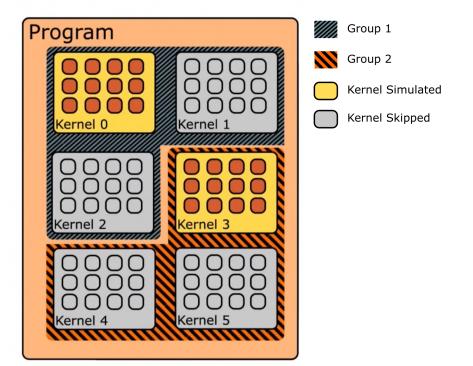


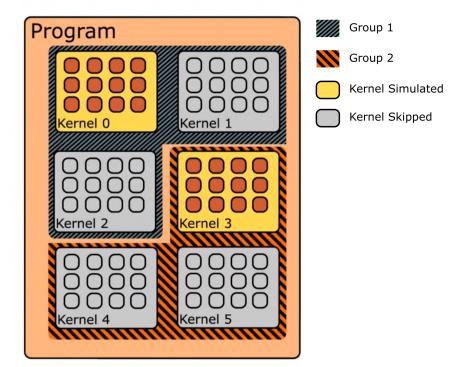

Proposed method


- Take advantage of the GPU/Accelerator programming model
 - Natural synchronization points at kernel boundaries
- Within kernels, code performance is generally more uniform than CPU applications.
- Can we take advantage of these factors?
- Key Objectives:
 - As hardware agnostic as possible: want sampling to hold inter-generation
 - Avoid application-specific characteristics: want to run everything with zero tuning.

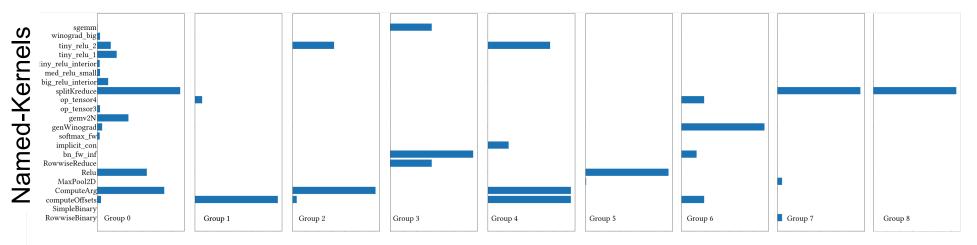

Two key elements


- Select a representative set of kernels
 - Contemporary workloads can run millions of kernels
 - Perform Principal Kernel Selection (PKS)
- Within kernels, code performance is generally more uniform than CPU applications
 - Leverage this fact: perform Principal Kernel Projection (PKP) of statistics
- Together these form our Principal Kernel Analysis (PKA) solution.

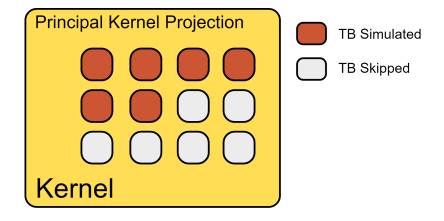




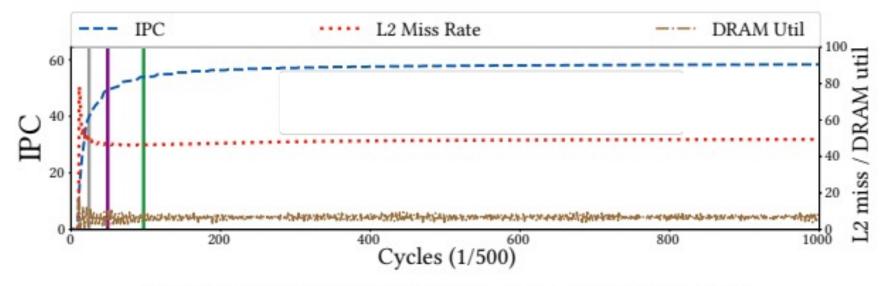
- AIM: Reduce the number of simulated kernels. (i.e., inter-kernel reduction)
- We profile the program and obtain hardware-agnostic metrics
- Loads, stores, atomic instructions, etc., etc.


- We use PCA + K-Means to group similar kernels.
 - Technique scales to millions of discrete kernels
- Select one kernel from each group as the principal kernel, skipping all other kernels in a group.
- Project the performance of each group by scaling the performance of the principal kernel by the number of kernels in the group.

Group composition

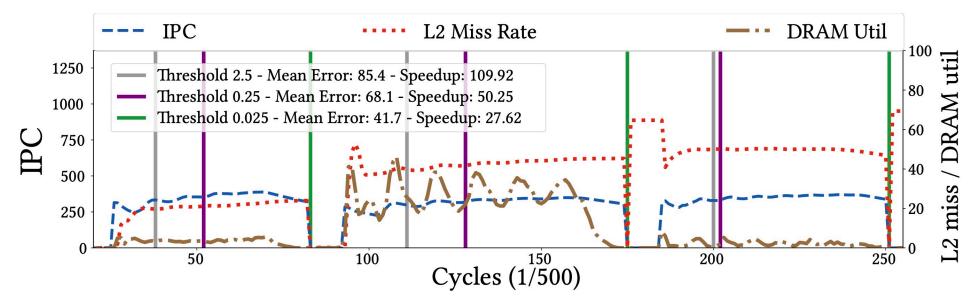

- Group composition not homogeneous
 - Different groups might contain the same named kernels as other groups

Example ResNet

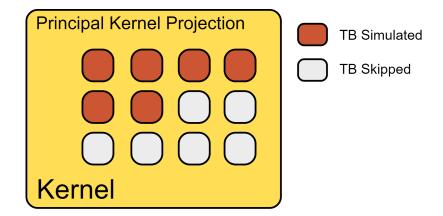


Per-Group Kernel Frequency

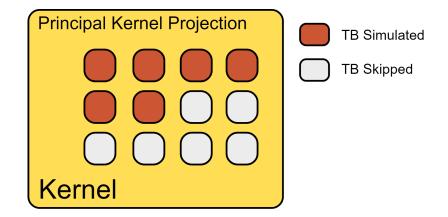
- Individual kernels can still be too long.
- AIM: Reduce the execution time of long kernels. (i.e., intra-kernel)
- We observed that for some applications the IPC of a kernel stabilizes, even for workloads that would otherwise seem irregular.



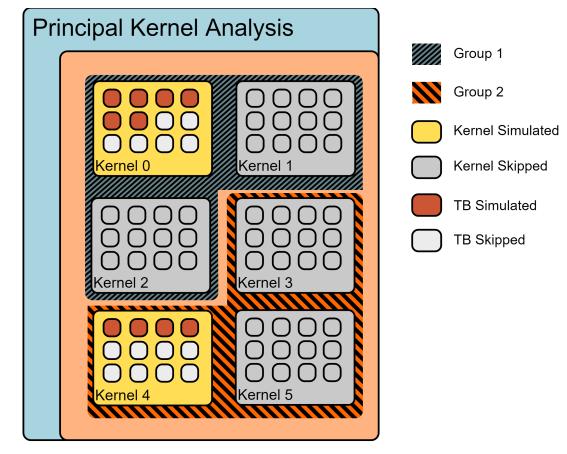
Kernel Stability in Regular Applications


(a) A single kernel from atax: A regular application.

Stability in Irregular Applications BFS

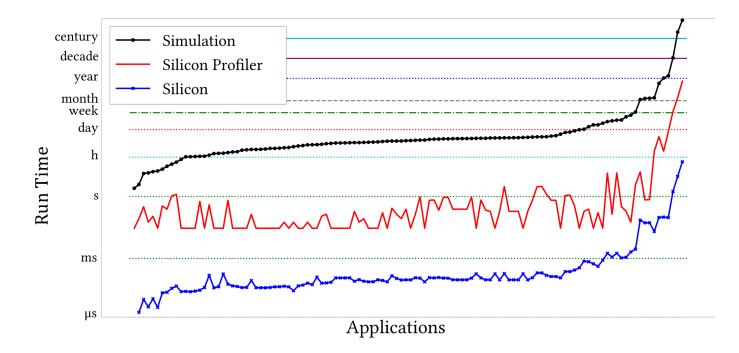

Stability Projection

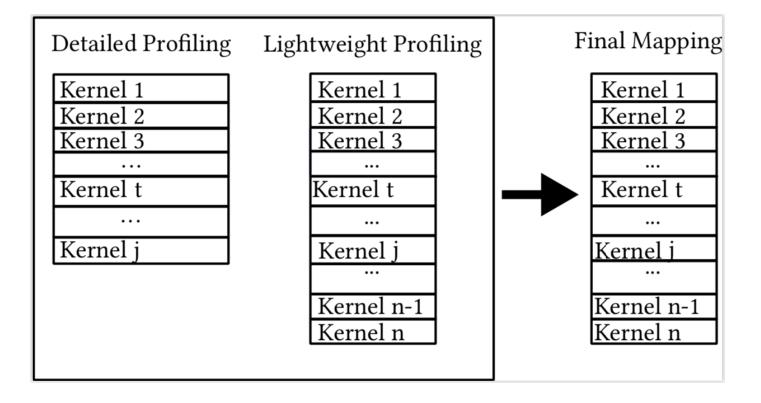
- If the kernel is stable, we:
 - 1. Assume:
 - IPC is constant
 - 2. Know:
 - Number of Instructions remaining
 - Number of Thread blocks remaining
- We can project how long it would take to finish the kernel
- We skip simulating all thread blocks after we project



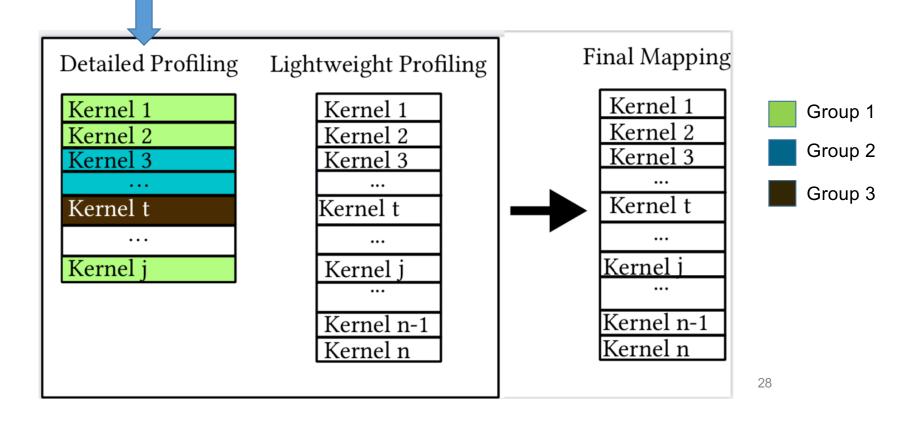
Stability Conditions

- 1. Stable IPC
 - Coefficient of variance less than some threshold t
- 2. Some thread-blocks have finished
 - Different rules depending on overall number of thread blocks and occupancy.

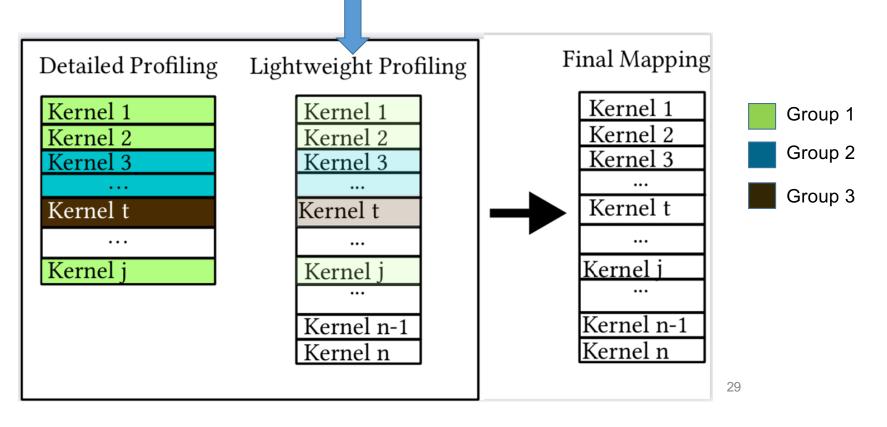

Proposed Joint Method - PKA

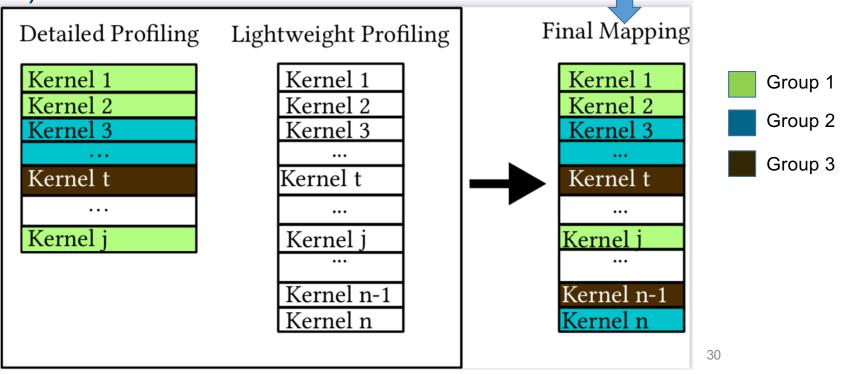


Proposed Method – One more fact


Detailed profiling has an overhead

• We calculate it to be $10^3 - 10^4$ slower than silicon.



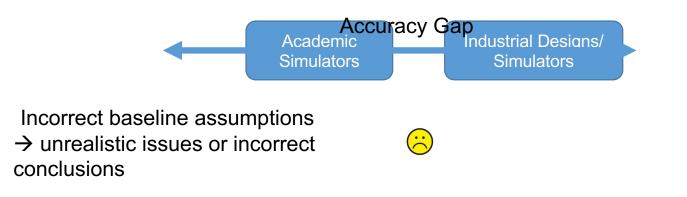

• Perform detailed profiling on the first **j** kernels where profiling time is practical. Perform PKS on these kernels.

 Perform lightweight profiling on all the kernels (just get kernel name, dimensions + layer info for ML workloads)

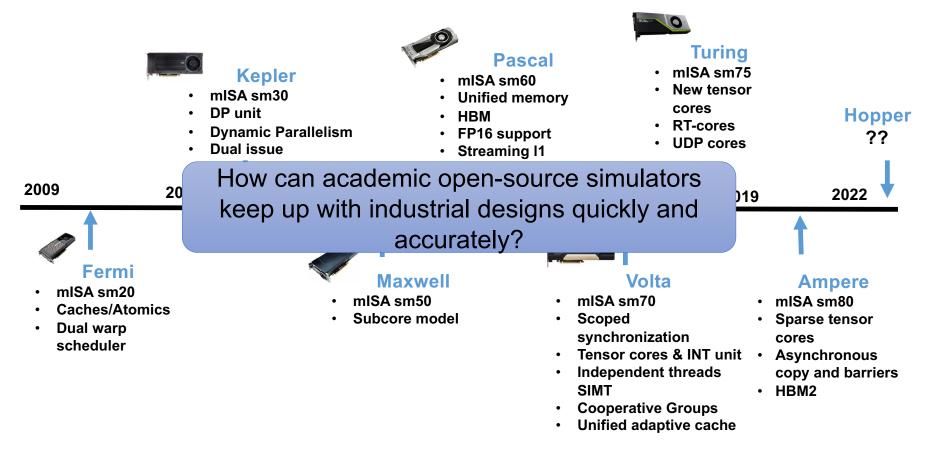
 We map data from a partial detailed profiling and a complete lightweight profiling using classification algorithms (i.e., SGD, MLP)

Methodology

- Accel-Sim Simulation framework
 - Trace-based simulation framework integrated on GPGPU-sim.
 - Version 1.1
- Run 140+ benchmarks per architecture
 - Rodinia, Polybench, Parboil, Cutlass, Deepbe nch, MLPerf (SSD, ResNet, BERT, 3D Unet, GNMT)



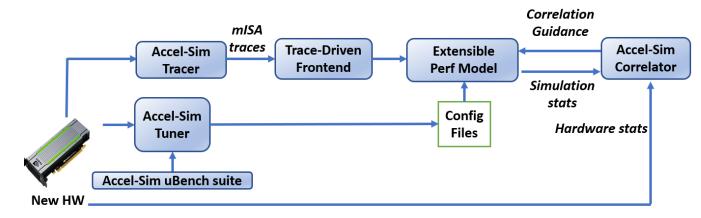
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling – Khairy et al. - ISCA 2020


Architecture Simulators

• Simulation is commonly used to estimate the effectiveness of a new architectural design idea.

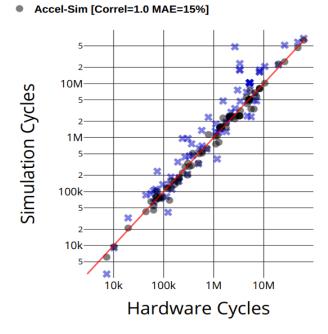
The simula released for open deel.
 Research cannot look ahead, if its baseline assumptions are too far behind

GPU Accelerators are Evolving Rapidly


New machine ISA and architecture designs every 1-2 years!

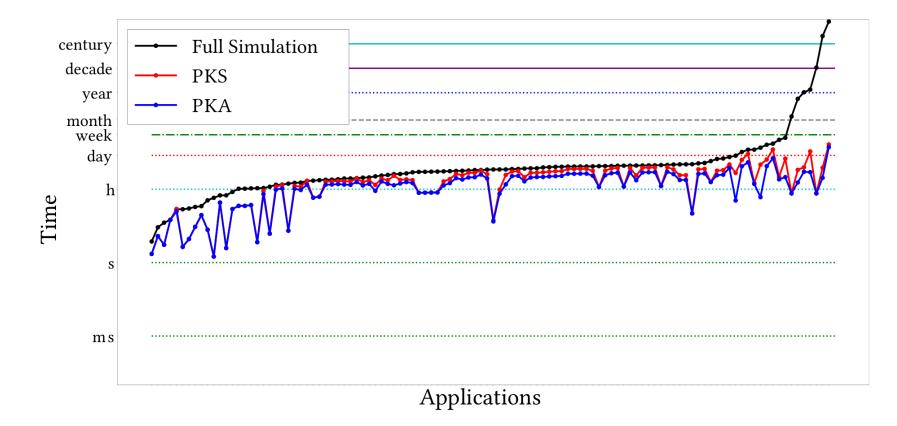
We show here an example of Nvidia GPU. Similar trend was observed for other GPU vendors.

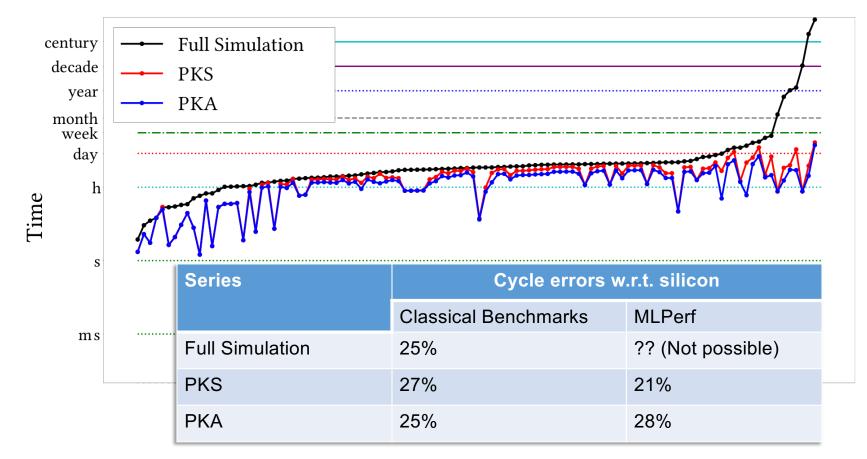
Accel-Sim [ISCA'20]


 Accel-Sim introduces a simulation framework to help solve the problem of keeping simulators up-to-date with contemporary designs.

 <u>Key Results</u>: Modeling and validating against five generations of NVIDIA GPUs ranging from Kepler to Ampere with correlation > 0.97 in all instances.

GPGPU-Sim 3.x vs Accel-Sim


• Accel-Sim decreases cycle error from <u>94%</u> to <u>15%</u>.


SPGPU-Sim 3.x [Correl=0.87 MAE=94%]

More detailed correlation results can be found in the paper.

PKA Results – Time reduction

Results – Time reduction

Results

Application	Vo	lta		con	Am	pere		Metrics DRAM Util					
	Error [%]	SU	Error [%]	SU	Error [%]	SU	SimError	PKS Error	Volta PKS SimTime [H] (SU)	PKA Error	PKA SimTime [H] (SU)	Full	PKA
Rodinia Suite	•								()		()		
b+tree	0	1	0	1	0	1	5.8	5.8	0.4 H (1.0)	3.5	0.2 H (1.7)	14.3	14.2
backprop	0	1	0	1	0	1	4.3	4.3	0.1 H (1.0)	4.3	0.1 H (1.0)	35.0	55.0
bfs1MW	5	1.5	0.4	1.2	0.7	1.3	36.7	34.5	1.4 H (1.5)	12.1	1.0 H (1.7)	24.0	30.4
bfs4096	1.6	1.2	2	1.2	1.8	1.2	15.5	23.0	0.1 H (1.2)	23.0	0.1 H (1.2)	0	0
bfs65536	1.9	19.6	35.6	31.1	2.8	19.4	14.2	12.1	0.0 H (21.4)	12.5	0.0 H (22.2)	0	0
dwt2d_192	1.2	3.5	1.4	3.2	6.3	3.3	45.2	48.3	0.0 H (3.5)	48.3	0.0 H (3.5)	0	0
dwt2d_rgb	0.3	2.3	1.2	2	0.1	2	1.6	0.1	0.1 H (2.4)	0.1	0.1 H (2.4)	25.4	41.36
gauss_208	5	435.6	7.8	449	7.2	446.1	56.7	63	0.0 H (429.6)	51	0.0 H (431.1)	0	0
gauss_mat4	1.8	5.9	0.9	5.9	1.1	6.1	77.8	86.8	0.0 H (6.0)	86.8	0.0 H (6.0)	0	0
gauss_s16	2.5	14.9	2.9	14.8	0.1	14.5	73.5	84.5	0.0 H (15.0)	73.5	0.0 H (20.1)	0	0
gauss_s64	0.7	60.1	1.6	61.3	2.4	62	69.8	79.0	0.0 H (63.7)	67.9	0.0 H (74.0)	0	0
gauss_s256	0.4	226.3	8.5	167.9	3.8	232.4	53.4	65.8	0.0 H (248.0)	50.8	0.0 H (258.4)	0	0
hots_1024	0.4	1	0.0	101.0	0.0	1	3.9	3.1	0.2 H (1.0)	9.1	0.1 H (1.3)	23.5	20.4
hots_512	0	1	0	1	0	1	16.1	16.1	0.2 H (1.0) 0.0 H (1.0)	16.1	0.0 H (1.0)	0	20.4
hstort_500k	4.8	4.4	6	4.6	3.9	4.4	45.1	46.5	0.0 H (1.0) 0.3 H (4.3)	46.5	0.3 H (4.3)	1.0	1.28
hstort_500k	4.8	4.4	7.8	4.6	3.9	4.4	45.1 49.5	46.5	0.3 H (4.3) 2.3 H (5.6)	46.5	0.3 H (4.3) 2.2 H (5.7)	14.1	1.28 34.9
			7.8		5.9								
kmeans_28k	1.4	1.6		1.3		1.6	15.8	16.6	17 M (1.6)	16.6	17 M (1.6)	9.4	6.6
kmeans_819k	0	1.2	0	1.3	0.1	1.4	60.8	38.9	5.1 H (1.1)	3	1.5 H (3)	31.2	32.6
kmeans_oi	0.1	1.2	0	1.3	0.1	1.4	57.6	32.8	3.8 H (1.1)	0.2	1.8 H (2.0)	29.8	32.0
lavaMD	0	1	0	1	0	1	13.2	13.2	8.0 H (1.0)	0.1	6.7 H (1.2)	*	*
lud_i	2	19.5	6.7	13.2	4	16	10.6	15.8	0.0 H (18.2)	11.6	0.0 H (18.7)	0.4	0.0
lud_256	0.4	8.5	0.5	7.8	0.6	8	11.8	15.7	0.0 H (7.6)	11.8	0.0 H (7.2)	0.1	0.0
myocyte	*	*	*	*	*	*	*	*	*	*	*	*	*
nn	0	1	0	1	0	1	38	38	0.0 H (1.0)	38	0.0 H (1.0)	0	0
nw	3.6	88.2	7.7	92.1	2.9	87.5	0.1	1.3	0.0 H (87.1)	2.5	0.0 H (87.6)	0	0
scluster	0.9	128.9	1.9	127.5	1.2	128.5	25.9	30.4	0.0 H (125.5)	30.4	0.0 H (119.5)	*	*
srad_v1	2	98.2	0.9	99.2	0.6	99.5	2	2.3	0.1 H (101.8)	2.3	0.1 H (101.8)	0	0
Parboil Suite													
bfs	4.2	1.1	3.9	1.1	4	1.1	37.8	40.4	0.9 H (1.1)	40.4	0.9 H (1.1)	*	*
cutcp	3.3	4.1	2.9	4	3	4	17.5	19.5	0.9 H (4.0)	19.5	0.9 H (4.0)	*	*
histo	0.4	20.1	0.2	20	0.3	19.9	60.9	57.4	0.2 H (18.4)	57.4	0.2 H (18.4)	14.0	14.5
mri	0.4	3	0.2	3	0.3	3	8.2	8.2	0.2 H (2.9)	8.2	0.2 H (2.9)	0.3	2.1
sad	0	1	0	1	0	1	7.8	7.8	0.3 H (1.0)	7.8	0.3 H (1.0)	10.0	10.0
sgemm	0	1	0	1	0	1	153.9	153.9	2.9 H (1.0)	153.9	2.9 H (1.0)	5.1	5.1
spmv	2.2	48.9	0.8	50.4	0.5	50.3	14.2	12.4	0.1 H (50.9)	12.4	0.1 H (50.9)	*	*
stencil	0	100	1.3	101.3	0.3	99.7	30.1	30.1	0.0 H (1)	30.1	0.0 H (1)	0.1	5
Polybench Su		100	1.0	101.5	0.5	33.1	30.1	30.1	0.0 11 (1)	30.1	0.0 H (1)	0.1	0
2Dcnn	0	1	0	1	0	1	12	17	1.3 H (1.0)	42	0.2 H (4.6)	53.5	36.0
2DCnn 2mm	0	2	0.1	2	0	2	6.8	1.7	99.7 H (2.0)	42	3.8 H (1.3)	33.3	30.0
												-	-
3dconvolution	4.6	242.9	2.2	259.8	0.4	253	50.3	56.6	0.0 H (243.7)	56.6	0.0 H (249.7)	0	0
3mm	0.4	3	0.1	3	0.5	3	11.4	11.6	1.7 H (3.0)	7.9	1.3 H (4.0)	0.4	0.6
atax	0	1	0	1	0	1	22.4	22.4	2.3 H (1.0)	22.4	2.3 H (1.0)	6.5	6.5
bicg	0	1	0	1	0	1	23	23	2.2 H (1.0)	23	2.2 H (1.0)	6.5	6.5
correlation	0	1	0	1	0	1	42.8	42.8	494.4 H (1.0)	42.8	494.4 H (1.0)	*	*
covariance	0	1	0	1	0	1	43.4	43.4	502.6 H (1.0)	43.4	502.6 H (1.0)	*	*
fdtd2d	1.6	711.1	1.3	722.5	1.6	706.9	6.5	2.6	0.3 H (725.6)	2.6	0.1 H (2725.5)	1 T	
gemm	0	1	0	1	0	1	12.8	12.8	1.9 H (1.0)	7.5	1.5 H (1.3)	0.5	0.7
gsummv	0	1	0	1	0	1	0.1	0.1	2.5 H (1.0)	0.1	2.5 H (1.0)	6.7	5.9
gramschmidt	4.9	498.2	6.8	507.1	4.3	494.5	27.8	26.3	1.1 H (500)	26.3	1.1 H (500)	*	*
mvt	0	1	0	1	0	1	22.9	22.9	2.3 H (1.0)	22.9	2.3 H (1.0)	6.5	6.5
syr2k	0	1	0	1	0	1	119	188	50 D (1.0)	11.0	24 H (50)	0.1	0.2
syrk	0	1	0	1	0	1	1.7	1.7	45.2 H (1.0)	17.6	8.2 H (5.5)	*	*
Cutlass Perf	Suite S	GEMM	(10 in	outs)									
Mean	0.3	6.0	0.0	6.0	0.0	6.0	1.9	1.9	4.9 H (6.1)	3.7	2.4 H (7.6)	6.1	5.3
Cutlass Perf			A (Tens	orCore									
Mean	0.3	7.0	0.7	7.0	0.1	7.0	44.9	45.0	1.8 H (7.0)	42.7	0.4 H (12.3)	11.0	10.3
Deepbench S													
Mean	0.8	1.5	0.9	1.5	0.6	1.6	13.4	13.5	2.3 H (1.4)	13.6	2.1 H (1.5)	1.2	0.6
Deepbench S				raining									
Mean	1.3	2.8	51.3	5.0	0.5	3.6	*	*	*	*	*	1.8	6.1
Deepbench S	uite - C	onvolu	tion - T	ference	(Tere) (5 inputs)		1		1	1.0	0.1
Mean	0.9	1.5	0.2	1.5	0.2	1.5	11.1	11.9	2.9 H (1.4)	13.0	2.5 H (1.6)	1.8	0.8
Deepbench S								11.9	a.9 m (1.4)	13.0	a.o n (1.0)	1.0	0.0
			*	rannig *	(renso	a core)		25.6	140 11 (1 7)	26.2	195 H (9.0)	0.6	2.0
Mean	2.1	1.9		Televi			21.6	25.8	14.8 H (1.7)	28.3	12.5 H (2.9)	0.6	2.0
Deepbench S						nputs)	10.0	10.1	2.2.W (1.C)	10.1	0.0 H (1.6)		00.0
Mean	2.4	1.1	4.1	1.2	4.2	1.2	10.3	12.4	2.2 H (1.2)	12.4	2.2 H (1.3)	21.1	38.0
Deepbench S			bench -		ng (5 in								
Mean	0.9	1.3	0.2	1.6	0.6	1.5	12.6	11.6	3.5 H (1.3)	11.6	3.4 H (1.4)	23.4	29.3
Deepbench S					nce (Ter								
Mean	2.4	1.1	4.0	1.2	4.0	1.2	10.4	12.5	3.1 H (1.2)	12.5	3.1 H (1.2)	21.1	38.1

Application			Silico	n				Metrics					
	Ve	olta	Turi	ng	Amp	ere			Volta			DRAM Util	
	Error [%]	SU	Error [%]	SU	Error [%]		SimError	PKS Error	PKS SimTime [H] (SU)	PKA Error	PKA SimTime [H] (SU)	Full	PKA
Deepbench Suite - GEMM bench - Train (TensorCore) (5 inputs)													
Mean	0.8	1.3	0.1	1.5	0.8	1.5	12.7	11.8	4.2 H (1.3)	11.8	4.1 H (1.3)	25.2	27.0
Deepbench Suite - RN	N bench	- Infer	ence (9	inpu	ts)								
Mean	3.3	3.0	5.6	5.3	3.2	4.5	18.7	13.0	6.1 H (1.9)	13.0	6.1 H (1.9)	0.1	6.0
Deepbench Suite - RN	N bench	- Train	(5 inp	uts)									
Mean	0.5	1.1	1.5	1.2	1.1	1.1	19.4	18.8	6.3 H (1.2)	18.8	6.3 H (1.2)	0.3	5.8
Deepbench Suite - RN	N bench	- Infer	ence (T	ensor	Core) (10 in	puts)						
Mean	3.4	3.2	6.6	5.0	3.6	4.3	18.8	13.3	5.7 H (2.1)	13.3	5.7 H (2.1)	0.1	6.0
Deepbench Suite - RN	N bench	- Train	(Tense	orCor	e) (5 in	puts)							
Mean	0.6	1.1	1.6	1.2	0.7	1.1	19.6	19.0	6.0 H (1.2)	19.0	6.0 H (1.2)	0.3	5.0
MLPerf Suite													
BERT Offline Inference	12.5	21564	*	*	*	*	*	29.51	0.4 H	29.51	0.4 H (1)	*	*
SSD Training	32.5	13000	*	*	*	*	*	35.9	4.5 H	28	0.5 M (500)	*	*
ResNet 50 64b Inference	3.2	1144	*	*	*	*	*	6.4	10 H	18	1.3 H (17)	*	*
ResNet 50 128b Inference	3.8	851	*	*	*	*	*	3.5	8 H	12	1.5 H (5)	*	*
ResNet 50 256b Inference	0.7	330	*	*	*	*	*	2.2	18 H	24	1.6 H (11)	*	*
GNMT Training	16.2	9630	*	*	*	*	*	17.0	36 H	39	25 H (1.4)	*	*
3D-Unet Inference	2.8	141	*	*	*	*	*	49.3	0.1 H	49.3	0.1 H (1)	*	*

Results

MLPerf suite

Application	Silicon							Me	trics				
	Vo	lta	Turing Ampere			ere		DRAM Util					
	Error [%]	SU	Error [%]	SU	Error [%]	SU	SimError	PKS Error (SU)		PKA Error	PKA SimTime [H] (SU)	Full	PKA
MLPerf Suite													
BERT Offline Inference	12.5	21564	*	*	*	*	*	29.51	0.4 H	29.51	0.4 H (1)	*	*
SSD Training	32.5	13000	*	*	*	*	*	35.9	4.5 H	28	0.5 M (500)	*	*
ResNet 50 64b Inference	3.2	1144	*	*	*	*	*	6.4	10 H	18	1.3 H (17)	*	*
ResNet 50 128b Inference	3.8	851	*	*	*	*	*	3.5	8 H	12	1.5 H (5)	*	*
ResNet 50 256b Inference	0.7	330	*	*	*	*	*	2.2	18 H	24	1.6 H (11)	*	*
GNMT Training	16.2	9630	*	*	*	*	*	17.0	36 H	39	25 H (1.4)	*	*
3D-Unet Inference	2.8	141	*	*	*	*	*	49.3	0.1 H	49.3	0.1 H (1)	*	*

-

	1111							
							10.00	
Theorem Street							1.19	
Troughtourity Bartis		Romona II (
Troughtourity Minter		Simeren (*	Constant States of States	(manif				
Broughteneth Robert	Carrienter	formers the	and Parent Pr					
Broughtourith Bights	Control Service	(helenin)	n fannys 🛄					1991.199
Sugarant State	Section (section)	(Moleciae)						THE R.
Brogenouth Roma	Conserve Server	- Andrewson		(Constant)	10.00		10.00	TREE BE

PKA vs. Single iteration in ML Workloads

- Another increasingly popular option is to run a single iteration and scaling that by the number of iterations in the entire program
- Fast and accurate, but still orders of magnitude slower than PKA
- More involved process, must mark where an iteration starts, etc., etc. PKA is completely automatic, doesn't require context.
- Even more manual with sequence/input-dependent workloads like BERT.
 - Could use seqPoints for some SQNN's, point still stands, more involved, less automatic.

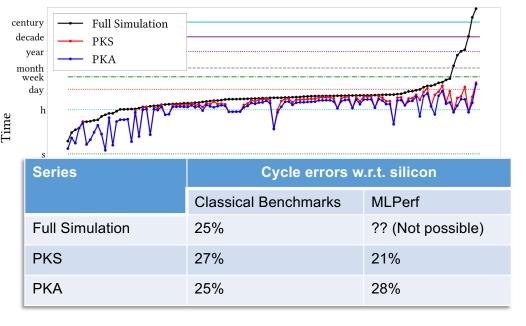
Thanks to the students

Cesar A. Baddouh

Mahmoud Khairy

Roland Green

Principal Kernel Analysis


Questions?

 Key idea: Summarize a GPU program by grouping kernels together, simulating a principal kernel per group and scaling the performance. If the IPC is stable, skip remaining thread blocks and project the number of cycles remaining.

• Results:

- Enable simulation of long running programs via an **automatic** process
- Centuries long simulations now achievable in hours, at an acceptable error within 5% of the full simulation
- Validation of hardware-invariance across three GPU generations
- Artifact available

