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MODSIM WAS KEY TO NVIDIA THEN AND NOW

“But the reason I'm talking about it in this episode is that DNA comes from the fact that in order to
survive when they had nine months left, the way that they saved themselves was with simulation. It
became very clear to the company very early on, the benefits of being able to simulate something
rather than having to do it in the real world.”
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MODSIM HAS COME A LONG WAY

= Today there are more applications to evaluate and they are more complex
= Still key to HW innovation and debugging silicon

= However, simulation of large applications is hard and time consuming so
kernels and proxies often used
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AND WE NEED MODSIM TO CONTINUE TO EVO

ANNOUNCING THE NEW DGX SUPERPOD

World's First Cloud-Native Supercomputer | Secured by NVIDIA BlueField | Multi-Tenant Bare-Metal Performance
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HISTORIC HPC ECOSYSTEM

SIMULATION

Experimental Facility

._ SUPERCOMPUTING
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50 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp
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50 Years of Microprocessor Trend Data
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We Have More Transistors to Use
But They Aren’t Getting Much Faster

And We Can’t Turn Them on All at
Once



EXPANDING HPC ECOSYSTEM

HPC * Al SIMULATION DIGITAL TWIN QUANTUM COMPUTING
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THE CHALLENGES WE ARE ENCOUNTERING

Algorithms, Applications, Workflows, Processor, Node and System Architectures are Evolving at a Rapid Pace

Processor Features

— FLtUre Processor 1 Future Processor 2
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Dense
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DEPARTMENT: LEADERSHIP COMPUTING

Preparing for the Future—Rethinking Proxy
Applications
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SARS-CoV-2 target identification

Network-based methods for host
pathogen interactions

PDB dataset . Candidate
targets

| |

Al-based loop modeling and
structures

/
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IMPECCABLE WORKFLOW GORDON BELL 2020

-

Drug Databases

(ENAMIN, DRUGBANK, ZINC, etc.)

Featurization
(MOdred, graph/neural fingerprints)

Physics-based Docking

— RL-Dock: Al approach ——
\_

Active learning strategies for virtual screening (Rick Stevens)\

10,000,000,000 compounds
screened with Al models

Physics based models

Al-based models

|

250,000,000 poses docked

6,250,000 systems build and minimized

156,250 systems simulated
(that’s about 12H on 1024 summit nodes)

A

Al-based consensus
ranking / scoring
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Multi-scale, multi-resolution modeling of the

3
2
1
)
/-\-
ity 2
i ~3
<
o J D
- /\'
o 0
N A 1
) 4 ~ 2

Rommie Amaro

~N

‘eins

-

DeepDriveMD: Al-driven adaptive sampling/ simulations
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Execution time

Simulation tasks

Machine Learning/ Deep Learning tasks

Carlos Simmerling

Spawn new trajectories with novel states
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MD Simulation

MD Simulation
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(OpenMM) (OpenMM)
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GPU 1 GPU 2 GPUK
MD Simulation 1 MD Simulation 2 MD Simulation K
(OpenMM) (OpenMM) (OpenMM)
J, i i Hyperparameter optimization/ training
Data collection (trajectories + contact maps [.h5])
.| CVAE training 1 CVAE trainin g2 CVAE training M
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Terminate simulations Cluster
onformational
states

v !
(Arvind Ramanathan, Shantenu Jha)

iterate until new training
cycle is needed or
protein is folded
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2021 WORKFLOW EXTENDED TO MODEL
VIRION IN AN AEROSOL WITH DFT ACCURACY

e R‘=0.18, N= 1800
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SMA system captured with
multiscale modeling from classical
MD to Al-enabled quantum
mechanics. For all panels: S
protein shown in cyan, S glycans
in blue, m1/m2 shown in red, ALB
in orange, Ca2+ in yellow spheres,
viral membrane in purple.

A) Interactions between mucins
and S facilitated by glycans and
Ca2+.

B) Snapshot from SMA
simulations.

C) Example Ca2+ binding site from
SMA simulations (1800 sites, each
1000+ atoms) used for Al-enabled
guantum mechanical estimates
from OrbNet Sky.

D) Quantification of contacts
between S and mucin from SMA
simulations.

E) OrbNet Sky energies vs
CHARMM36m energies for each
sub-selected system, colored by
total number of atoms.
Performance of OrbNet Sky vs.
DFT in subplot (wB97x-D3/def-
TZVP, R2=0.99, for 17 systems of
peptides chelating Ca2+ (Hu et al.,,
2021)). Visualized with VMD.



2021 WORKFLOW EXTENDED TO MODEL
VIRION DETAIL FROM CRYOEM IMAGES
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LHCB INTRODUCES ALLEN
FOR REAL TIME TRIGGER AND TRACKING AT THE EDGE

Challenge

Apply conventional FFT and KALMAN Filter
methods to perform trigger and tracking in the
same process step for the LHCb Upgrade

Solution
An optimized suite of algorithms was developed by
CERN with support from NV to

Impact
Throughput with trigger and tracking of >60kHz
was demonstrated

The full experiment can be supported with 500
GPUs

Run 3 commenced this quarter with 10x processing
throughput
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GYROKINETIC FUSION REQUIRES THE EXPANDED
ECOSYSTEM AT THE EDGE

= Accelerated Simulations
= GTC, XGC, GENE, CGYRO ... 10x + unaccelerated

= Surrogate Models
= SGTC six orders of magnitude faster than GTC
= QualikNN 4 orders of magnitude faster than Qualikiz

= Control System Prediction for Disruption at the Edge
= At DIII-D

= FRNN 86% accuracy based on diagnostics from JET
experiment with live testing at DIlI-D underway

= GatedRNN and Random Forest ML in control system now
= At TCV

= Reinforcement Learning applied with DeepMind and DIFFER

= Digital Twin
= Early Demonstration with MAST Experiment at UK AEA

Physical System Digital Twin
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FINAL THOUGHTS

* ModSim is needed now more than ever as transistor count continues to grow while frequency remains
flat and power management becomes critical

= Algorithm diversity is increasing at a rate well beyond historical norms

= The workload evolving to workflows is introducing new “opportunities” for science discovery but also
new bottlenecks as Amdahl’s Law is extended across all the workflow components

= Communication is becoming a more critical factor than ever within a processor, across processor
components on a node, within a system, across subsystems and between facilities

Trained Model or Surrogate

enoise, Extract, Filter, Segment, Transform,
ose, Interactive visualization hMotion detect, Reconstruct, Register, Classify, Control, Detect, Measure

Segment Human vis

H-— & 8 2

Data Acguisition Infarence Data Analytics Post Process Results
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