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What is quantum good for?
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What is quantum good for?

Optimization tasks

Artificial Intelligence

Finance

Security Industrial chemistry

Drug discovery
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What is quantum good for?
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How does quantum work?

1 qubit

Classical 0

Classical 1
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1 qubit    à simultaneous 21 classical 1-bit states *
N qubits  à   simultaneous 2N classical N-bit states *

How does quantum work?

1 qubit

Classical 0

Classical 1

Quantum Advantage

* with some constraints
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qubit 1q gate 2q gate Measure

classical bit

Internally computes on 2N N-bit states, but 
collapses at measurement to 1 N-bit state.

How does quantum work?



9Gambetta:2017 npj Quantum Information;    Singh:2022 Phys. Rev. X;     STAQ / Duke University  

NISQ era: Many promising but imperfect 
quantum technologies

Superconducting Trapped IonNeutral atom

NISQ: Noisy Intermediate Scale Quantum à Few qubits, poor quality
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Superconducting Trapped IonNeutral atom

Qubit Lifetime
Gate Fidelity

Gate Fidelity
Measurement

Scalability
Gate Speed

Gambetta:2017 npj Quantum Information;    Singh:2022 Phys. Rev. X;     STAQ / Duke University  

NISQ era: Many promising but imperfect 
quantum technologies

NISQ: Noisy Intermediate Scale Quantum à Few qubits, poor quality
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State prep error
   qubit decoherence, 
   1Q/2Q gate errors, 
   crosstalk errors, 
   measurement errors

Noisy quantum circuits
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Bridging the quantum gap: Reduced application 
requirements + better technology?

2009 2016 20302023
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Bridging the quantum gap: Classical 
computing approaches
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1. PL and Compilation 

2. Computer Architecture

3. Classical simulation

4. High performance computing

5. Cryogenic hardware design

6. Noise modeling and Optimization

7. Multi-chip / distributed computing

8. Cloud resource modeling and 
management

Bridging the quantum gap: Classical 
computing approaches
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+ Classical
   Methods

Chemistry / Optimization



15

Application fraction Classically tractable

Classically intractable

#1) Classical simulation to alleviate quantum 
challenges
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Application fraction Classically tractable

Classically intractable

Classical runtime
Classically tractable

Classically intractable

#1) Classical simulation to alleviate quantum 
challenges
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Application fraction Classically tractable

Classically intractable

Classical runtime
Classically tractable

Classically intractable

To Q

Not to Q
(detrimental: 
noise / cost)

#1) Classical simulation to alleviate quantum 
challenges
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Application fraction Classically tractable

Classically intractable

Classical runtime
Classically tractable

Classically intractable

To Q

Not to Q
(detrimental: 
noise / cost)

#1) Classical simulation to alleviate quantum 
challenges

Ø No clear separation between classical and quantum components.
Ø The classical tractability depends on the simulation platform.
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Application fraction Classically tractable

Classically intractable

Classical runtime
Classically tractable

Classically intractable

To Q

Not to Q
(detrimental: 
noise / cost)

CAFQA: A Classical Simulation Bootstrap for 
Variational Quantum Algorithms

Gokul Ravi, Pranav Gokhale, Yi Ding, William Kirby, Kaitlin Smith, Jonathan 
Baker, Peter Love, Hank Hoffmann, Kenneth Brown, Frederic Chong. ASPLOS 
2023 + QIP 2022

Observed to recover 99+% 
of initialization accuracy 
lost in SOTA method!
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Navigating a classical optimization contour
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Navigating an ideal Variational Quantum 
Algorithm contour
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Noise induced
local minimum

Navigating a noisy Variational Quantum 
Algorithm contour
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CAFQA Insight #1: Portion of the quantum space is classically simulable (Clifford space).

NOISE
FREE!!

CAFQA: Clifford Ansatz For Quantum Accuracy
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CAFQA Insight #2: Efficiently search the discrete space classically to find the lowest objective (w/ Bayesian Optimization). 

=

Bayesian Optimization

CAFQA: Clifford Ansatz For Quantum Accuracy
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CAFQA: Clifford Ansatz For Quantum Accuracy
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* Doesn’t have to be so 
accurate, but often is! *

CAFQA: Clifford Ansatz For Quantum Accuracy
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Parameterized ansatz circuit

How VQA works



Classical 
Optimizer

28

Parameterized ansatz circuit

How VQA works



Parameterized ansatz circuit
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Classical simulability of Clifford quantum 
circuits



Parameterized ansatz circuit
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A classically intractable general circuit
Continuous angles = [0, 2*pi]

Classical simulability of Clifford quantum 
circuits
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A classically simulable Clifford circuitA classically intractable general circuit
Discrete angles = {0, pi/2, pi, 3*pi/2}

Gottesman–Knill theorem [‘98] - A QC circuit can be classically simulated efficiently 
if: (a) it has only Clifford gates, (b) classical qubit prep and measurement.

Parameterized ansatz circuit

Continuous angles = [0, 2*pi]

Classical simulability of Clifford quantum 
circuits



32

A classically simulable Clifford circuitA classically intractable general circuit
Discrete angles = {0, pi/2, pi, 3*pi/2}

Parameterized ansatz circuit

Continuous angles = [0, 2*pi]

CAFQA

=

Classical simulability of Clifford quantum 
circuits
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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https://distill.pub/2020/bayesian-optimization/

Unknown function Surrogate model Next query

Finding the optimal Clifford point: Bayesian 
Optimization
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HyperMapper [Nardi 2019]: A Practical Design 
Space Exploration Framework.

(1) Random forests surrogate model (discrete 
search space).

(2) Semi-greedy acquisition function.

Finding the optimal Clifford point: Bayesian 
Optimization
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Quantitative benefits for chemistry 
applications

Potential Energy



Potential Energy
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Objective

Quantitative benefits for chemistry 
applications

Potential Energy
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Hartree-Fock 
initialization

CAFQA initialization
Potential Energy

Objective

Quantitative benefits for chemistry 
applications

Potential Energy
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CAFQA: 100x higher 
initial accuracy

CAFQA: 80 itns 
to converge

HF: ~1000 itns to 
converge (12x worse)

HF: 3x worse error

Objective

Quantitative benefits for chemistry 
applications

Potential Energy
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Rate ∝ Exp(-ΔE/kT) 

Initialization values

Run on Q device

Quantitative benefits for chemistry 
applications

1. CAFQA achieves 99% mean initialization 
accuracy (systems up to 34 qubits).

2. Recovers up to 99.99% of Hartree-Fock 
inaccuracy (57x mean).

3. BO takes ~2000 iterations (mean), 1 
hour to a week in wall-clock time.

Potential Energy



CAFQA 2.0: Reducing the constants and tackling 
new applications.
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• Bare-metal Hamiltonian expectation compute on Cliffords: 10x speedup.

• Genetic Algorithm – inefficient but much faster: 10x speedup.

• Parallelization of GA population: 10-100x speedup. 

• 100-qubit physics spin models: 
• CAFQA 1.0: NA vs. CAFQA 2.0: 1 hour

• Cr2 molecule (34 qubits, 30k terms):
• CAFQA 1.0: 1+ week vs. CAFQA 2.0: 10 hours (and order of magnitude higher accuracy)

• Exploiting Clifford symmetry in designing the ansatz: ??? speedup



CAFQA-ish: Classical sim to the compute limit
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Systematically push to max classical limit
What is the classical limit?: Laptop vs Desktop vs Supercomputer
Interesting optimization problems 



Working with classical simulators
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Build new theory-inspired simulators, accelerate 
with application-tailoring, software, hardware 
optimizations, integrate with SOTA classical/AI tools
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#2) Adaptive noise mitigation through 
modeling and optimization

Q

Noise
mitigation
in isolation
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Q

Noise
mitigation
in isolation

Quantum systems ‘in the wild’ 
w/ complex + volatile noise

#2) Adaptive noise mitigation through 
modeling and optimization



54

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Noise
mitigation
in isolation

Adaptive deployment of 
noise mitigation techniques

Quantum systems ‘in the wild’ 
w/ complex + volatile noise

#2) Adaptive noise mitigation through 
modeling and optimization
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Q
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Q

Q

Q

Q

Noise
mitigation
in isolation

Adaptive deployment of 
noise mitigation techniques

Quantum systems ‘in the wild’ 
w/ complex + volatile noise

#2) Adaptive noise mitigation through 
modeling and optimization

Ø Noise models are important.
Ø Noise models are hard / will not suffice.



Gate scheduling and insertion for noise 
mitigation

56

Error Mitigation in Quantum Computers through Instruction Scheduling. Smith, Ravi, et al. ACM TQC. 2022

Noise modeling is critical to study new error mitigation techniques!
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VAQEM: A Variational Approach to Quantum Error Mitigation. Ravi et al., HPCA ‘22

Optimizing VQA noise mitigation ‘in the loop’

Minimize Objective (H) 

X Y X Y

Gate scheduling / DD seq. insertion

Noise models don’t capture complex interactions but can help strategize and reduce search space for dynamic optimization schemes!
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QISMET: Navigating the Dynamic Noise Landscape of Variational Quantum Algorithms. Ravi et al., ASPLOS ‘23

Mitigating transient noise effects in VQA

Transient effects

100th ->500th iteration 
benefit effectively nil

Time (hours)

T1
 (u

s)

10 20 30 40 50 60

25

50

75
100

Potential transient errors!

JJ Burnett, et al. Decoherence benchmarking of superconducting qubits. NPJ Quantum 2019

Noise models are poor for transient noise but profiling can help learn thresholds for dynamic optimization schemes! 
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#3) Resource modeling in the cloud
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Management of 
Q resources

Processing of Q outputs

#3) Resource modeling in the cloud



61

x

Quantum
Machine

Quantum
Machine

Diverse quantum apps / jobs 
submitted to the cloud

Per-machine/cluster queues

Manager

X

Classical

Classical

Hybrid

M
ulti-m

achine

Diverse machines / 
technology

Dynamic varying
 machine loads

Best Q machines for app? Best hybrid systems for app? Throughput vs fidelity? FT + NISQ? QOS guarantees?
 

Quancorde: Boosting fidelity with Quantum Canary Ordered Diverse Ensembles. Ravi et al., ICRC ’22 + Patent filed

Adaptive job and resource management for the growing quantum cloud. Ravi et al., QCE ’21 + Patent filed
Quantum Computing in the Cloud: Analyzing job and machine characteristics. Ravi et al., IISWC ‘21

Managing cloud resources

Security



Quantum Cloud: Error diversity (Spatial)
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Quantum Cloud: Error diversity (Temporal)
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Quantum Cloud: Machine loads and wait times

64



Quantum Cloud: Machine utilization

65



Bonus: Cryogenic chip design

66

https://research.ibm.com/blog/goldeneye-cryogenic-concept-system
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1. PL and Compilation 

2. Computer Architecture

3. Classical simulation

4. High performance computing

5. Cryogenic hardware design

6. Noise modeling and Optimization

7. Multi-chip / distributed computing

8. Cloud resource modeling and 
management

Bridging the quantum gap: Classical 
computing approaches
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Project Arxiv Software
CAFQA arXiv:2202.12924 github.com/rgokulsm/CAFQA

VAQEM arXiv:2112.05821 github.com/rgokulsm/VAQEM

QISMET arXiv:2209.12280 Coming Soon

VarSaw arXiv:2306.06027 https://github.com/siddharthdangwal/VarSaw

QCloud arXiv:2203.13121 https://github.com/rgokulsm/QuantumQueue

https://arxiv.org/abs/2202.12924
https://arxiv.org/abs/2112.05821
https://arxiv.org/abs/2209.12280
https://arxiv.org/abs/2306.06027
https://arxiv.org/abs/2203.13121

