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Some thoughts — Exa/Al/Qu/Zetta = EAZQ

* Exascale — how did we get here and what do still have to deliver to
make good on the promises we made

* Al — huge opportunity that is impacting nearly everything we will do
going forward, but we need to own the Al and Science coupling

* Quantum — we probably need to curb the enthusiasm a bit, but what
should we be doing to make history proud of us?

 Zetta — Progress towards Zetta needs to underpin the overall plan as
the deep foundations need reinforcement and Q will not replace it






Summer of 2007

Modeling and
Simulation at the
Exascale for
Energy and the
Environment

ley National Laboratory

Thomas Zacharia
Oak Ridge National I.nInrruh)r"y
May 17-18, 2007 7
Rick Stevens
Argonne NationalLaboratorg
May 31-June 1, 2007

" Office of
{ Sclence

Early of 2008

ExaScale Computing Study: TR
Technology Challenges in o G »
Achieving Exascale Systems

5 0T RS
Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar
Dan Campbell .
William Carlson
William Dally (NFORMATION PROCESSING TECHMIQUES OFFICE

Monty Denneau
Paul Franzon
William Harrod
Kerry Hill

Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod
as Program Manager; AFRL contract number FA8650-07-C-7724. This report is published in the
interest of scientific and technical information exchange and its publication does not constitute the
Government’s approval or disapproval of its ideas or findings

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.




Leadership Facility Strategy for the future

Roadmap and Timeline

Through a three-phase plan executed over the next decade, the LCF will deploy a
series of ever-more-powerful, balanced, scalable, HPC and data resources to support

the most challenging computational problems of the nation.

Phase 1: Procure and operate pre-Exascale systems (2018) Three-way RFP w/ ORNL, ANL, LLNL

Phase 2: Procure and operate Exascale systems (2022)
Phase 3: Procure and operate Second generation Exascale systems (2026)

Computer System requirements for each Leadership Computing Center

Peak FLOP/s 10-20 PF 100-200PF  500-2000PF  2000-4000 PF
Memory 05-1PB 5-10 PB 32-64 PB 50-100 PB
/0 Buffer N/A 500 TB 3PB 5PB
Storage Disk#pe  20+100 PB 100+1000 PB 1+10 EB 5+50 EB
Poust &S0 5o loom0 e Bo00IB000T  20000% 25000
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Exascale Program Timeline

Applications Co-Design
Multi-Petaflops Systems Acquisitions ‘ SEEEL GRS
Ps 5Y g Acquisitions

S Exascale Programming Environ rnent, Operating Systems and
Runtime

Design
Forward

Integration Phase Prototype Build Phase

Fast Forward Path Forward Phase

Exascale Initiative Funding

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024




Pre-exascale and Exascale US Landscape

Summit 2018 IBM + NVIDIA V100
Sierra 2018 IBM + NVIDIA V100
Perimutter 2021 AMD + NVIDIA A100
Polaris 2021 AMD + NVIDIA A100
Frontier 2021 AMD + AMD MI250x
Crossroads 2023 Intel
Aurora 2023 Intel + Intel PVC

El Capitan 2023 AMD + AMD MI300



Aurora

Leadership Computing Facility
Exascale Supercomputer
Overview
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Peak Performance System Size

= 2 Exaflops DP 18665223532 Racks

21,248 CPUs
Intel GPU 63,744 GPUs
Intel® Data Center GPU Max
Series 1550

Code named “PVC”

Compute Node

2 CPU, 6 GPU

1TB DDR5

1 TB HBM

8 Fabric NICs

Node Unified Memory Architecture

Intel Xeon PROCESSOR

Intel® Xeon® CPU Max Series with
HBM

Code named “SPR+HBM”

Platform
HPE Cray-Ex

Aggregate System Memory
DDR5 10.9 PB, 5.95 PB/s

HBM CPU 1.36 PB, 30.5 PB/s
HBM GPU 8.16 PB, 208.9 PB/s

System Interconnect

HPE Slingshot 11

Dragonfly topology with adaptive
routing

2.12 PB/s Peak Injection BW
0.69 PB/s Peak Bisection BW

High-Performance Storage
220 PB

31 TB/s DAOS bandwidth
1024 DAOS nodes

Programming Environment
oneAPI

C/C++

Fortran

SYCL/DPC++

Python
Aurora MPICH and oneCCL
OpenMP offload
Kokkos, RAJA
Intel PerformanceTools, Intel gdb
Tensorflow, PyTorch
DDP, Horovod, DeepSpeed
oneDAL and ScikitLearn
Python Libraries
JupyterHub
Julia, Numba
Spark
MLDE, SmartSim







Delivering on Exascale Science

—> Large Number of Applications




O pe n M C (courtesy of John Tramm)

https://docs.openmc.org (Higher is better)

* OpenMC is being developed as part of the ECP ExaSMR project (Pls: Steven 00 g 000 ars 60000 15400
Hamilton, Paul Romano) 400 o0 o0

* OpenMC is a Monte Carlo particle transport code written in C++ and the 200 e T o 0
OpenMP target offloading programming model I l o Em . .

0 0 0

* The project seeks to accelerate the design of small modular nuclear reactors by Single GPU PN de Multi-Node (96 GPUS)
generating virtual reactor simulation datasets with high-fidelity, coupled physics
models for reactor phenomena that are truly predictive W swporoxove lfperaxmasor potnflxasoo

* The Monte Carlo method employed by OpenMC is considered the "gold
standard" for high-fidelity but these methods suffer from a very high
computational cost. 1. OE+08

* The extreme performance gains OpenMC has achieved on GPUs is finally & Sunspot Intel PVC
bringing within reach a much larger class of problems that historically were -=Crusher AMD MI250X
deemed too expensive to simulate using Monte Carlo methods. ~Polaris NVIDIA A100

1.0E+07

1.0E+06

1 PVC Tile

Performance [particles/sec]

1 MI250X GCD

1.0E+05

0.1 1 GPUs 10 100

Argonne ¢
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CRK'HACC (courtesy Adrian Pope, Steve Rangel, Nick Frontiere)

ESP/HACC PI: Katrin Heitmann
ECP/ExaSky PI: Salman Habib

* CRK-HACC simulates the formation of large-
scale structures in the Universe over
cosmological time.

* CRK-HACC employs n-body methods for gravity
and a novel formulation of Smoothed Particle
Hydrodynamics.

* CRK-HACC is a mixed-precision C++ code, with
FLOPS-intense sections implemented using
architecture-specific programming models in
FP32 precision.
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cupA P SYek SYCL 2 4 8 16 32 64 128 256 512 1024
NVIDIA AMD  Intel PVC Intel PVC
A100 MI250X 128 GRF 256 GRF Number of GPUs

CUDA and HIP are maintained as a single source with macros.

SYCL kernels were translated from CUDA using SYCLomatic and custom LLVM-
based tools, including optimizations for Intel GPUs.

Figure-of-Merit (FOM) has units of particle-steps per second.

Single GPU FOM problem used 33 million particles per GPU, and Intel PVC
results are shown for both small (128) and large (256) General-purpose
Register File (GRF) modes.

Weak-scaling results are shown with the full application FOM, where the GPU
represents roughly 80% of the total wall clock.



ECP

QM C PACK (courtesy Thomas Applencourt, Ye Luo, Jeongnim Kim)

ECP Project Pl: Paul Kent

FOM single GPU (higher is Scaling
* QMCPACK, is a high-performance open- better) ©00E+0
source Quantum Monte Carlo (QMC) ' .
: : 02 2.50E+02
simulation code. <
_ ' 015 & 2.00E+02
 Science case: computing the quantum S 1506402 )
mechanical properties of materials with o1 £ 1 00E+02
benchmark accuracy, including for @ - 00Es0L
energy storage and quantum materials. *% '
0.00E+00
« QMCPACK uses C++ and OpenMP target ° 0 50 100 150 200
offload, plus wrappers (eg SYCL) around PVC HMA100 mH100 * -ideal Sunspot  GPUs

vendor optimized linear algebra.

* Running ‘dmc-a512-e6144-DU64" problem. This simulates a supercell of nickel
oxide with 6144 electrons and 512 NiO atoms total.

* Intel® Data Center GPU Max Series: 2 MPI ranks per GPU, 8 Walkers per rank, 64
GB of HBM per stack. Using Intel(R) oneAPI DPC++/C++ Compiler 2022.12.30

* A100 (40GB): 1 MPI Rank, 7 Walkers. LLVM15 compiler.
H100: llvm/clang 17, cuda 11.8): 1 MPI Rank, 7 Walkers

* The Figure Of Merit (FOM) measure is throughput (walker moves/second). Higher
is better.




XG C (courtesy Tim Williams, Aaron Scheinberg)

ESP Project Pl: CS Chang
ECP Project Pl: Amitava Bhattacharjee SimpleFOM, single-GPU measurement Weak Scaling, ITER ES Case
500E+06 e ideal —e—Sunspot ideal Frontier
» Science case: Predict ITER fusion 450E+06 ~4-30E+06
reactor plasma behavior with Tungsten | 400€+06 384500 2/00E+09
impurity ions sputtered from the = oo 2.95E+06 S 1506409
divertor g 2508406 % 1.00E+09
» Gyrokinetic particle-in-cell simulation 5 e =
of tokamak plasma using C++ and: oo > 00E+08 =
—Kokkos/SYCL on Intel GPUs 5.00E+05 0.00E+00
— Kokkos/HIP on AMD GPUs 0.00E+00 0O 100 200 300 400
Sunspot Polaris Frontier GPUs
— Kokkos/CUDA on NVIDIA GPUs
ideal ®Sunspot ideal m Frontier ideal m Polaris
2.50E+07 2.50E+07 2.50E+07
s 2.00E+07 s 2.00E+07 s 2.00E+07
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N WCh e m EX (Courtesy of Ajay Panyala)

https://github.com/NWChemEx-Project
ESP & Project Project Pl: Theresa Windus

NWChemEx is a general purpose electronic
structure code, which includes

- Array of high-fidelity coupled cluster methods
- Hartree-Fock, DFT, MP2 methods

- Reduced-scaling DLPNO formulation

- Molecular dynamics

Programming models: C++, CUDA, HIP, SYCL

- Communication frameworks: Global Arrays,
UPC++, MADNESS

- Tensor Contraction Engines: TAMM,
TiledArray

Key physics modules
- DLPNO-CCSD(T)

» Reduced-scaling implementation for
GPU platforms

“Snapshot of Ubiquitin
Protein

EARLY
SCIENCE
PROGRAM

AURORA

Strong Scaling
Performance on 90-nodes

12 mPolaris: 4 x Nvidia AL00 40GB

W Sunspot: 6 x Intel® Data Center GPU Max 1550
W Frontier: 4 x AMD MI250X

o o
o ©

Relative Time To Solution

o
~

0.2

90 Nodes

Performance on Single GPU

®mAMD MI250x (SYCL)

% AMD MI250x (HIP)
®NVIDIA A100 40GB (SYCL)
= NVIDIA A100 40GB (CUDA)
Hntel® Data Center GPU Max
1550

—- Frontier: 4 x AMD MI250X
—@— Polaris: 4 x Nvidia A100 40GB
—4— Sunspot: 6 x Intel Data Center GPU Max 1550
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20 40 60 80 100 120 140 160 180
Time(s) 1000
. . . . . 200 T T T T T T T T T
Single GPU, Time in seconds for DLPNO-CCSD per iteration 30 40 50 60 mcpsl? 90 100 200
S

Performance of SYCL on NVIDIA & AMD were comparable with
native CUDA & HIP respectively

. Acknowledgment: Work performed by the NWChemEx team members without any
architecture specific optimizations



Language model outputs
predictions and insights that
guide the formulation of
constraints for the mechanistic
(or simulation) model.

Simulation

Results to Text

The constraints can encode AI ManagEd Sims

specific experimental conditions,
predicted/hypothetical
interactions, associations, etc.

Dynamics, etc. parameters can be inferred from available dynamics

data.
L 0
Mechanistic l ‘

Constraints

Compare with

Timeseries
Data

econstr. Simulation

Simulation Results

Training Mechanistic Models

The simulation results will capture behaviors
(e.g., dynamics) that are not accessible by direct
observation, but are supported by indirect

observations, experiments, etc. Prototyping this in the context of

Radiation biology.. Cancer and space travel

By translating these simulation results to text ..
y & Are the motivations

we provide new simulation-supervised dataset
that would improve the LLM.






On the road to Al for Science




DOE's Unique Position for Al Leadership

Leadership in experimental facilities

* Operates the most capable computing and supercomputers

systems and the world’s largest collection of
advanced experimental facilities

* Responsible for US nuclear security through
deep partnerships across government

 Largest producer of classified and
unclassified scientific data in the world

e Strongest foundation combining physical,
biological, environmental, energy,
mathematical and computing sciences

 Largest scientific workforce in the world

¥0AK Rins

» Strong ties with private sector technology o

and energy organizations and stakeholders

lﬁ% U.S. DEPARTMENT OF
{(Z)ENERGY

-
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Al for Science, Energy and Security

What changed in three years?

Al FOR . Language Models (e.g. ChatGPT) released .‘

SCIENCE " N . Al FOR SCIENCE,
Artificial image generation took off § ENERGY, AND
Al folded a billion proteins

Al hints at advancing mathematics g

& JEFF NICHOLS
73 ARTHUR BARNEY MACCABE [ )
™ O Ridge National Laboratory

’*; © . % Al automation of computer programming
ST Explosion of new Al hardware |
Al accelerates HPC simulations
Exascale machines start to arrive

B
Oeiercy Wversy 2

Report posted here:

2020 DOE Office of Science ASCR Advisory Committee report

recommending major DOE Al4S program _oepaRTMENT OF | Office of -
NERGY | science N " =

“
L)
a?

National Nuclear Security Administration



https://www.anl.gov/ai-for-science-report

Workshops organized on six crosscutting themes

Al for advanced Al and robotics
properties inference for autonomous
and inverse design discovery

Energy Storage Materials, Chemistry, Biology
Proteins, Polymers, Light-Sources, Neutrons

Stockpile modernization

Al for software Al for prediction and Foundation, Assured Al
engineering and control of complex for scientific

programming engineered systems knowledge

Code Translation, Optimization Accelerators, Buildings, Cities Hypothesis Formation, Math
Quantum Compilation, QAlgs Reactors, Power Grid, Networks Theory and Modeling Synthesis,

Vogin

U.S. DEPARTMENT OF Ofﬁce of N 'S(?’Qi
ENERGY Science 5§ - ,A, h ."%\
ational Nuclear Securlty Administration

@ ).
R



Foundation Models — What are they?

* Large scale model trained on large One Model = Many tasks Tasks
datasets from many sources (text, papers, $ == ?-‘:—?
datasets, code, molecules, etc.) ata & @

« Additional training to improve the human = & & @
. . o R @ o=
interaction experience (e.g., ChatGPT-4) v G W ..

o i 4 :’ Model %ﬁ g?)i’iining§

- Large models are remarkably flexible and -
exhibit emergent behaviors (capable of ) & g
tasks not originally trained to do) &

« Many hundreds of applications built on top

* There are early efforts underway in DOE labs Trained on trillions of input "tokens”
to create Foundation Models explicitly for many weeks on a large-scale computers

targeting scientific discovery SOTA models (GPT-4) have about

1 trillion parameters (1% brain scale)

Office of 73
Science N A'SQ__Q"

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy




Since 2019 LLM model development has

accelerated




Rapid Development of Large Language Models

Explosion of development of
N LLM based Al systems since
| @, Eme | e oo@m“ 2019

Evolutionary RBe BordG @46 f frassicde  Cadm

Tree n

\‘ 5154 Sparrol©® PaLM 2
\:‘ . 0:(:)] MO Minervd G
Koot Sourcs 7| pe e S Foundation Models are
InstructGPT)& o GPT-NeoX[a} .
) STIG ol B replacing narrow Al systems

(GPT-Neol&

~| CodeX & CLaMG
\ MT-NLG", .
‘ . Jurassic-142! O at d rapld pace
PT-

jz . . Foundation Models are the
R _— closest things that have yet
o) XLNet[c} open source 1¥ '.é;f
gme 7 G been created that
— ) =0 hint at the possibility of
—cs Artificial General Intelligence

f?’% U.S. DEPARTMENT OF ofﬁce of N \’!".i
(WENERGY |stene NS



Foundation Models for Science — Opportunities

* FMs can summarize and distill knowledge - extract
information from million of papers into compact
computing representation - PPl networks, materials
compositions, code kernels, biological function, etc.

« FMs can synthesize - combine information from multiple
sources - generate small programs for specific tasks -
quantum computing programs using QISkit & Cirqg,
derivations for applied physics, code for visualization and
animation, etc.

* FMs can generate plans, solve Io%ic problems and
write experimental protocols for robots - powering self-
driving labs, generate strategies for problem solving, and
planning for testing hypotheses

« FMs with additional research, may be able to
enerate hypotheses to be tested and new theories
or exploration - a full-time shared scientific assistant
that learns from across all of science is possible

Can ChatGPT be used to generate scientific hypotheses?
Yang Jeong Park'2, Daniel Kaplan®, Zhichu Ren®, Chia-Wei Hsu®, Changhao Li', Haowei Xu', Sipei Li'
and Ju Li**

! Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, MA 02139, USA

? Institute of New Media and Comm 1 Gwanak-ro, Gwanak-gu, Seoul

3 Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
4 Department of Materials Sci nstitute of Technology, 77
SA

Abstract

We investigate whether large language models
thai ly do. Whil rro;
0

In a university or rescarch institute, a significant portion of fresh idcas arises out of discussions.
Can talking to ChatGPT-4,' OpenAD's latest chatbot, create genuinely interesting scientific
hypotheses?

In the past, only humans generated interesting hypotheses. Computers have been used to perform
numerical simulations or even to prove theorems, like the four-color theorem in 1976, But making

interesting laboratory-testable hyp: with artificial intelligence (AI) scems far-fetched, until
recently.
Wearea ive group of experi and theorctical in physical sciences and

engincering. Generative Pre-trained Transformer (GPT-4), released on March 14, 2023, is a large
ifi

To make everything concrete, our operative definition of “genuinely interesting scientific

hypotheses” is (a) whether after a some of a field can feel

1

After experimenting with GPT-4 in our own research domains in materials chemistry, physics and quantum
information, we find that ChatGPT-4 is knowledgeable, frequently wrong, and interesting to talk to. In other

\g@y NI\ T | Sclence "W s e

#zs. Words, not unlike a college professor or a colleague. https://arxiv.org/pdf/2304.12208.pdf




Leveraging Community Efforts

Exemplar DOE

S Mission Tasks
Scientific &
Engineering Tasks Scientific
Datasets i

% Question = 7 Discovery
L R Answering  *
Mathematics ‘ Digital Twins
Biology Data i @ s _
Materials - L ) Analysis Inverse Design
Chemistry Text | l , o
Particle Physics Y '/ h & @) fodeOotimization
Nuclear Physics JJimeees mﬁj}( W Baracton” TN
_‘\\ \ |

Computer Science W 1raini : Adaptation & Accelergted

. Speech/\/\/\f\/\ Training | Foundation | g Image Simulations
Climate V4 Model %" Captioning &/

a o ) \\

Medicine B — Autonomous
Cosmology o= d Object Experiments

. . = RV | Recognition
Fusion Energy 3D Signals qurmm -

Accelerators

4 Instruction
Reactors @E\'\' Following .. -
Energy Systems vy

Manufacturing Co-Design

26



It is likely that many
of the use cases we
imagine in the
AI4SES report can
be driven directly or
indirectly from
sufficiently powerful
Foundation Models

Autonomous
Discovery

Self-Driving
Labs

Automated
Programming

Al Codebots

Knowledge
Synthesis

Hypotheses
Generation

Foundation
Models for
Science

HPC
Surrogates

Al Accelerated
Digital Twins

Inverse
Design

Al Based Reverse

Engineering

Control of

Complex Systems

Networked
Instruments




LLMs are already being used in many domains




a

Language models can Design Proteins
https://doi.org/10.1101/2021.07.18.452833;

Control tag(s) Model Generated English sentence
> Voting for the presidential election has begun
English |> The Red Sox defeated the Yankees at Fenway
language
model s o
m —> This knife is excellent for slicing meat
—> This knife is poorly made, not sharp at all!
4 Universal \I d Universal protein sequence dataset
| protein sequence 1 00— o
! dataset ] ,/ Natural proteins /
S T , /
Training / ‘ ’ ,I
/ /] o
/" Protein 4 - ‘ o
‘ language / =T
\_ model ) 4 4 U o
A A 280M sequences / i
" , >19KPfam families = = < ' /’
: ontroltagfor ~ - - - - - - - == - - - - -
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'_protein family f |

L

-

Control tag(s)

Model
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Protein
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________ -

—

Training: Negative
log likelihood minimization

Transformer
decoder

(@DXH
Control
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a,

Amino
acids

Generated protein sequence

—> DIQMTQSPASLS ... PKSFNRNEC L%l,

> MSNTELELLRQK ... KEKAGLELQ ) S .

—> YIEKYNAIAERHK ... RHKLNRFDG @Qg

CN
—> NIDFGFICELEGF ... ADLLESSMR i‘ %Q‘

Decoder Block 36 \
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|==|==j==]=]==)
Feed forward block
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Multi-head self-attention
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GenSLI\/I Foundatlonmedels _reveal new

ACM GORDON BELL SPECIAL PRIZE

=

presented by John West (ACM) ] 59

GenSLMs: Genome-scale Language Models Reveal SARS- CoV 2
Evolutionary Dynamics

University of Chicago, Argonne National Laboratory, NVIDIA, Cerebras
Systems, Northern Illinois University, Arizona State Univ




The most capable models today are in the private
sector (GPT-4, Claude, ChatGPT-3.5)

Large models with interesting emergent behavior




Model Description License

ChatGPT-4 by OpenAl Proprietary
Claude by Anthropic Proprietary

[-3.5-turbo ChatGPT-3.5 by OpenAl Proprietary

a chat assistant fine-tuned from LLaMA on user-shared Weights available; Non-
conversations by LMSYS commercial

Weights available; Non-

a dialogue model for academic research by BAIR 2
commercial

an RNN with transformer-level LLM performance Apache 2.0

ASS i Sta n t m O d e I S 7j,f,7,7 | an Open Assistant for everyone by LAION Apache 2.0

an open bilingual dialogue language model by Tsinghua Weights available; Non-

in the wild

Stability Al language models CC-BY-NC-SA-4.0

a model fine-tuned from LLaMA on instruction-following Weights available; Non-
demonstrations by Stanford commercial

ASS | Sta nt M o d e I S h ave be en fu rt h er FastChat-T5-3B a chat assistant fine-tuned from FLAN-T5 by LMSYS Apache 2.0
trained tO aCt as hel prI ChatbOtS SH : an instruction-tuned open large language model by

MIT
Databricks

Weights available; Non-

open and efficient foundation language models by Meta .
commercial

lerboard/ as of




Al Accelerated Post-Exascale Ecosystem

Scientific &
Engineering
Datasets

Mathematics
Biology
Materials
Chemistry
Particle Physics
Nuclear Physics
Computer Science
Climate
Medicine
Cosmology
Fusion Energy
Accelerators
Reactors
Energy Systems
Manufacturing

Text and Code
Corpora

General Text
Social Media
News

Humanities
History

Law

Digital Libraries
OSTI Archive
Scientific Journals
arXiv

Code repositories
Laboratory Notes
PubMed

Agency Archives

DOE and NNSA Exascale Systems
Common Al Software Frameworks
Responsible Al Techniques

Open
Science
Foundation
Models

's"’ n-aaEzaum .
- National

Security
Foundation
Models

Training

ﬁ?‘
1 Illl'vnll

Integrated Research Infrastructure
Online Experimental Facilities
Strategic Partnerships

Tuned and Adapted Downstream Models

Exemplar DOE
Mission Tasks

Scientific
Discovery

Digital Twins

Inverse Design

Code Optimization

Accelerated
Simulations

Autonomous
Experiments

Secure Data
Infrastructure

Co-Design




DOE is developing a concept for a large-scale
program to implement the AI4SES vision

we call it

FASST: Frontiers of Ai for Science, Security and
Technology




Integrated Program to Advance Trustworthy Al: Public-Private
Partnerships that Include Labs, Academia and Industry

Integrated science R&D for Al alignment,
trust and responsibility

Transformational hub-scale-centers on key AI4SES themes

strong ties to program grand challenges

Crosscutting Al technologies

Dedicated access to computing and
experimental facilities

y:‘ U.S. DEPARTMENT OF Office of \’,’4‘;‘
(DENERGY |ciee IS

National Nuclear Security Administration









QUANTUM is it going to contribute?

* How to resolve if quantum can contribute meaningfully to solving REAL
problems faster than CLASSICAL supercomputers

* Current state small QC machines, unreliable, “circuit” model for
programming, lack of error correction, lack of a good number of killer apps
(and superpolynomial speed up candidates), ad hoc integration strategies

 Target problems (Chemistry, Factoring) appear to require order a million
qubits and billions of gate operations

* Today’s systems are order 100 qubits and 100 gate operations



Possible real targets

e Quantum Simulation (Hamiltonians), solving problems like many body
electrons for larger systems than we can do classically, but that do not
require data or extended systems of mechanics ( atomic reactions for small
molecules and ground states, but probably not proteins and drug binding)

* Quantum Approximate Optimization Algorithms, approximately solving
combinatorial optimization problems with various constraints on density,
etc.

* Quantum physics exploration, using quantum computers to explore QFT
and related physics problems

 Algorithms research, the real impact may be simply from pushing on
algorithms as hard as possible and seeing some flow from QC back to

classical methods



2007.14460v2 [quant-ph] 3 Mar 2021

arxiv

Quantum computing enhanced computational catalysis

Vera von Burg,! Guang Hao Low,? Thomas Hiner,®> Damian S. Steiger,?
Markus Reiher,!** Martin Roetteler,? and Matthias Troyer?: '

! Laboratorium fiir Physikalische Chemie, ETH Ziirich,
Vladimir-Prelog-Weg 2, 8093 Ziirich, Switzerland
2 Microsoft Quantum, Redmond, Washington 98052, USA
3 Microsoft Quantum, 8038 Ziirich, Switzerland
(Dated: March 5, 2021)

The quantum computation of electronic energies can break the curse of dimensionality that plagues
many-particle quantum mechanics. It is for this reason that a universal quantum computer has the
potential to fundamentally change computational chemistry and materials science, areas in which
strong electron correlations present severe hurdles for traditional electronic structure methods. Here,
we present a state-of-the-art analysis of accurate energy measurements on a quantum computer for
computational catalysis, using improved quantum algorithms with more than an order of magnitude
improvement over the best previous algorithms. As a prototypical example of local catalytic chemical
reactivity we consider the case of a ruthenium catalyst that can bind, activate, and transform carbon
dioxide to the high-value chemical methanol. We aim at accurate resource estimates for the quantum
computing steps required for assessing the electronic energy of key intermediates and transition
states of its catalytic cycle. In particular, we present new quantum algorithms for double-factorized
representations of the four-index integrals that can significantly reduce the computational cost over
previous algorithms, and we discuss the challenges of increasing active space sizes to accurately deal
with dynamical correlations. We address the requirements for future quantum hardware in order to
make a universal quantum computer a successful and reliable tool for quantum computing enhanced
computational materials science and chemistry, and identify open questions for further research.
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ABSTRACT

As quantum hardware continues to improve, more and more application scientists have entered
the field of quantum computing. However, even with the rapid improvements in the last few
years, quantum devices, especially for quantum chemistry applications, still struggle to perform
calculations that classical computers could not calculate. In lieu of being able to perform specific
calculations, it is important have a systematic way of estimating the resources necessary to
tackle specific problems. Standard arguments about computational complexity provide hope that
quantum computers will be useful for problems in quantum chemistry but obscure the true impact
of many algorithmic overheads. These overheads will ultimately determine the precise point when
quantum computers will perform better than classical computers. We have developed QREChem
to provide logical resource estimates for ground state energy estimation in quantum chemistry
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Figure 2. Estimated total numbers of T gates for various algorithms over many molecules at many basis
set levels. See text for the definitions of the algorithms.
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IBM’s 100x100 Challenge

What is the 200100
Challenge? In 2024, IBM plans
to offer a tool capable of
calculating unbiased
observables of circuits with
100 qubits and depth-100 gate
operations in a reasonable
runtime.



Due to its many applications in chemistry and materials science, oo = Do fr g i s o ractoes b th catat i e opadered v o apponch
this problem is widely regarded as the “killer application” of

allows for a trade-off between the number of logical qubits required and the Toffoli count.

. Structure  Orbitals  Electrons R M QI‘-JIF " USiggé fewe; ‘};’?tslom USi;i; fewe; VI‘;OI;OHTOM

future quantum computers, a view that was supported by our 1 W e R a1 T
. R . I 62 70 734 33629 374.4 4200 3.6 8400 3.1
first rigorous resource estimate study for the accurate e S 800 87
. . . . . VIII 65 76 794 39088  425.7 4400 4.6 8900 3.8
calculation of electronic energies of a challenging chemical VX s 7 66 omm6 ssL4 000 84 000 29
X 62 68 638 28945  396.6 4200 3.5 8400 3.1
p ro b I e m . XVIII 56 64 705 29594  293.5 3700 2.5 7400 2.1

Table II. Comparison of our new double-factorization approach for Hpr applied to the FeMoco active site of nitro-
genase (N = 54) with prior approaches based on Trotterization [11] or qubitization [22] using the unfactorized H or
single-factorized Hcp Hamiltonian, and also for the VIII structure in the catalytic cycle (N = 65) where all examples
apply the incoherent truncation scheme with the same threshold of €in = ImHartree.

Electronic energy assessment

Choose Generate
. Generaty .
Structure exploration FRGA 2. 5oneme %3, active 4. Hamiltonian

[Ru] space Parameters
OCH4

Structure Approach « / Hartree Terms Qubits Toffoli gates Comments
Qubitization Hpr 300.5 1.3x 10° 3600 2.3 x10™ ¢, = lmHartree.
Qubitization Hpp 296.9 2.8 x 10° 3600 1.22 x 10*°  Optimistic €, = 73mHartree.
FeMoco  Trotterization H [11] - - 142 1.5x 10"  Optimistic Trotter number.
Qubitization H [22] 9.9 x 10° 4.4 x10° 5100 2.3 x 10  Truncation evaluated by CCSD.
Qubitization Hop [22] 3.6 x 10* 4.0 x 10° 3000 1.2 x 10’2  Truncation evaluated by CCSD.
Qubitization Hpr 425.7 2.5 x 105 4600 4.6 x 10™0 €n = lmHartree.
VIII Qubitization H 1.1x10*  2.2x10° 11000 9.3 x 10'' €, = lmHartree.
Qubitization Hop 4.2 x 10* 1.3x10° 5800 2.1x 102 &, = lmHartree.
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Kinetic modeling
(reaction rates)

Table III. Scaling of cost in our double-factorization approach with truncation threshold for the FeMoco active site

of nitrogenase (N = 54). For comparison, the last line has R = 200 which matches that used Berry et al. [22].
co, H,
WH " -
[RUfQHZ 1 €in / mHartree %ank Egenvectors TMerij apr / Hartree Qubits zaf::bh
0, 1 567 2.4 % 10° 1.30 x 10° 300.5 3600 2.3 % 107
10 371 1.33 x 10* 7.2 x 10° 300.0 3600 1.67 x 10'°
I

o

100 178 4.2 x 10° 2.3 x 10° 295.8 3600 1.16 x 10'°

+aH

H, Ru [RuJ*--OH 3 ™

R co,+31, LY CH,0H + Hy0 Mo v 73 200 5.2 x 10 28 x 10 296.9 3600 122x 10
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™ Thousands of qubits

Figure 3. Protocol of computational catalysis with the key step of quantum computing embedded in black, which is B H I I H t t H I I H f t
usually accomplished with traditional methods such as CASSCF, DMRG, or FCIQMC (see text for further explana- I I O n S O rl I O n S O ga e S

tion).




Shor’s 2048 factoring 6 billion gates on 6200 logical qubits

Active volume: An architecture for efficient fault-tolerant
quantum computers with limited non-local connections

Daniel Litinski and Naomi Nickerson

PsiQuantum, Palo Alto

Importantly, the architecture does not require all-to-all
connectivity between N logical qubits. Instead, each logical
qubit is connected to O(logN) other sites.

(a) Schematic description of active volume
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Assuming about 3K physical qubits per logical qubit in SC, lon systems

2211.15465v1 [quant-ph] 28 Nov 2022

arxiv

Example algorithm: 2048-bit factoring algorithm with
500,000 lookup additions (6.1 billion 7" gates) on 6200 logical qubits

General-purpose architecture

Old: Baseline architecture
with 2D-local connectivity

New: Active-volume architecture
with limited non-local connections

Cost function

Circuit volume
3.8 x 10"

Active volume
8.7 x 10M

Superconducting qubit implementation with 1 us code cycle

48 hours using
19 million physical qubits

54 minutes* using
19 million physical qubits

Trapped ion implementation with 1 ms code cycle

5.4 years using
19 million physical qubits

37 days using
19 million physical qubits

Photonic implementation with 1 ns resource-state generation cycle

48 hours using
9700 resource-state generators
with 200 m fiber delays

or

20 days using
970 resource-state generators
with 2 km fiber delays
or

200 days using
97 resource-state generators
with 30 km free-space delays
or

5.4 years using
10 resource-state generators
with 300 km free-space delays

54 minutes* using
9700 resource-state generators
with 200 m fiber delays

or

8.9 hours using
970 resource-state generators
with 2 km fiber delays

or

3.7 days using
97 resource-state generators
with 30 km free-space delays

or
35 days using
10 resource-state generators
with 300 km free-space delays

*if the reaction time is short enough

Figure 1: Resource estimates for the 2048-bit factoring algo-
rithm described in Ref. [1] in a baseline architectures [2-6] and
in the active-volume architecture described in this paper. More
details are found in Appendix A.



QUANTUM is it going to contribute?

* We need machines with 1,000’s of virtual-reliable qubits (1K-10K) able to
run programs/circuits of depth 0(10%°)-0(10'?) = > 1M physical qubits
and ~ 2 weeks of running at assuming ~us - ~ns clocks

* We need algorithms for problems with better than quadratic speedups

* We need use cases where the value of the Quantum computation is
greater than the cost of obtaining that result



Development Roadmap

Model
Developers

Algorithm
Developers

Kernel
Developers

System
Modularity

2019 @

Run quantum circuits
on the IBM cloud

Falcon ()
27 qubits

On target &)

2020 @ 2021 @

Demonstrate and
prototype quantum
algorithms and
applications

Run quantum
programs 100x faster
with Qiskit Runtime

Quantum algorithm and application modules

Machine learning | Natural science | Optimization

Hummingbird
65 qubits

Q Eagle ()

127 qubits

Executed by IBM O

2022 ©

Bring dynamic circuits to
Qiskit Runtime to unlock
more computations

Dynamic circuits

Osprey (/)
433 qubits

IBM Quantum

2023 2024 2025 2026+

Scale quantum applica-
tions with circuit knitting
toolbox controlling
Qiskit Runtime

Improve accuracy of
Qiskit Runtime with
scalable error mitigation

Increase accuracy and
speed of quantum
workflows with integration
of error correction into
Qiskit Runtime

Enhancing applications
with elastic computing
and parallelization of
Qiskit Runtime

Prototype quantum software applications @ —>  Quantum software applications

Machine learning | Natural science | Optimization

Quantum Serverless @

Threaded primitives @ Error suppression and mitigation Error correction

Condor )

1,121 qubits

Scaling to
10K-100K qubits
with classical
and quantum
communication

Kookaburra
4,158+ qubits

Flamingo
1,386+ qubits

o %

Crossbill
408 qubits

Heron @
133 qubits x p

‘0’_ \




Figure 2. Quantum computing prototypes announced on vendor roadmaps

2022 2023-2025 2025-2030 2030-2040+
2023 2024 2025 2025-2030 2029
Super-
conducting 1,121 qubits 50 qubits 1,024 qubits 1,000 qubits 1 million qubit
IBM Quantum QM Origin Quantum Fujitsu & RIKEN error-correct
Condor QC Google
2023 2025-2030 2029
Electron . . .
spin 10 qubits 100 qubits 100 logical qubits
SQcC SQC Quantum Motion
2023 2025 2026 2023-2027 2028 2027-2030
Tra}pped 29 algorithm 64 algorithm 256 algorithm  Model H2-H4 1024 algorithm Model H5
on qubits lonQ qubits lonQ qubits lonQ Honeywell qubits lonQ  lon-trap tiling
Honeywell
2022 2023 2024 2025
S a5 o 4 i
atom 100-200 qubit 1,000 qubit 1,024 qubits 1,000 qubits
Pasqal Pasqal QuEra ColdQuanta
Simulator Simulator
2022 2024 2026 2027-2030
Photon A A A A
6 qubit Computer 3 qubit computer 100+ qubit computer 1 million qubit computer
Quandela ORCA ORCA PsiQuantum

Source: Arthur D. Little, Olivier Ezratty




Can this be done?

1.

Massive search for fast (superpoly) Q algorithms (O(1000) computer
scientists for a decade :-) + Al

Government Commitments to field 2 or 3 > 1M qubit machines each
leveraging a different approach to qubits, scaling, reliability and fault
tolerance (SBILLION dollar machines)

Scale = Novel ways to connect and support active circuits, restrictive sets
of operation, limitations on entanglement etc.

Fab Paths = Superconducting, photons, lons/Atoms, dots, Majorana, etc.

Building Blocks and Interfaces = qubits, local/non-local comms, memory,
control, classical interfaces etc.

Leadership QC systems are likely to be embedded in leadership class
classical machines as all QC programs are hybrid
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We need are more “exponential” algorithms

 Loosely speaking quantum algorithms fall into two broad classes,
those that provides a superpolynomial or exponential speedup (e.g.
Shor’s) and those that are polynomial or less (e.g. Grovers)

* Without superpolynomial speedup it will be hard to beat classical
machines for any real problem instance [see recent papers]

* Many algorithms also have the challenge that they assume data is
already present in a “state prepared” and superimposed form

* Without breakthrough in quantum data loading, many applications
that need to process real data at scale (Al, Operations Research,
Biology, etc.) will be bottlenecked on loading data which is O(n) +
O(...) to just load data and will be limited by coherence times to load
data



Large-Scale QC systems are
also likely to be

Large-Scale Classical Systems




Quantum Computing Paradigms -- Mixed

define a quantum operator
name the operator dft (for discrete Fourier transform)
the operator will act on a quantum register named q

operator dft (qureg qg) {

const n=#qg; number of qubits in g

int i; int j; classical variables for loop indices

for i=0 to n-1 { outer loop

for j=0 to i-1 { inner loop
conditional phase rotation
Prepare CPhase (2*pi/2” (i-j+1), angle of phase rotation
Quantum gln-i-1] & g[n-j-1]); rotate if state of these qubits is 11
. }

ClaSSIcal Mix (gq[n-1i-1]) ; place qubit in state

of maximum superposition

}
flip(q); reverse order of qubits

Processing | Processing }

A program for computing the discrete Fourier transform is written in the programming lan-
guage QCL. The language combines elements that require a classical—that is, nonquantum—
computer (pink) with operations that are unique to quantum processors (blue).

American Scientist, Volume 102






ZETTASCALE — or how we continue to make
progress

* Nominal goal would be a system 1000x (fp64) todays EXA machines

e But EXA is not one thing (fp64 for classic sim, fp32, tf32, bfp16 for Al training,
fp8, int8, in4 for Al inference) and of course int4 >> fp64

* Current EXA design points are 20x -- 40x faster for Al inference compared to
fp64 GEMM

* MANY MANY OPEN ISSUES (power, bandwidth, memory, interconnect)

* representation flexibility — from 128-bit to 1-bit formats

« effective scalar-vector-matrix-tensor modes

* Throughput vs latency, memory hierarchy, levels of aggregation micro-macro
e do ISAs matter? can we do better than x86 or ARM or is even necessary

e Can we cheat on software using JAX like HLL binding to LL-ops



Some very high-level questions to consider

How much high-precision capability do we need for
scientific problems?

Will Al driven surrogates be the dominate approach for
simulations in the 2030’s?

Can we improve on sustainability of systems?




We are not the only ones thinking about Zetta

Perspective:

Moving from exascale to zettascale computing;:

challenges and techniques®

Xiang-ke LIAO, Kai LU™, Can-qun YANG, Jin-wen LI, Yuan YUAN, Ming-che LAI,
Li-bo HUANG, Ping-jing LU, Jian-bin FANG, Jing REN, Jie SHEN
College of Computer, National University of Defense Technology, Changsha 410073, China
tE-mail: kailu@nudt.edu.cn

Received Aug. 16, 2018; Revision accepted Sept. 14, 2018; Crosschecked Table 1 Zettascale metrics

Abstract: High-performance computing (HPC) is essential for both traditional Metric Value

enabling scientific activities to make progress. With the development of high-perform

that exascale computing will be put into practice around 2020. As Moore’s law approz Peak performa'nce 1 Zﬂops

computing will face severe challenges when moving from exascale to zettascale, makir Power consumpt ion 100 MW

vital period to develop key HPC techniques. In this study, we discuss the challenges ¢ .

with respect to both hardware and software. We then present a perspective of future Power efﬁaency 10 TﬂOpS/ w

revolution, leading to our main recommendations in support of zettascale computiny Peak performance per node 10 PﬂOpS/ node
Bandwidth between nodes 1.6 Tb/s
I/O bandwidth 10-100 PB/s
Storage capacity 17ZB

» U.S. DEPARTMENT OF Office of Floor Space 1000 m2

EN ERGY Science




Zettascale System Metrics

NUDT group proposes
Zettascale by 2035

Table 1 Zettascale metrics

PROGRESS REQUIRED

Metric Value
Peak performance 1 Zflops » 600x Frontier (58% CAGR)
Power consumption 100 MW » 3.4x Frontier (9% CAGR)
Power efficiency 10 Tflops/W » 200x Frontier (46% CAGR)
Peak performance per node 10 Pflops/node » 66x Frontier (=> 10x nodes)
Bandwidth between nodes 1.6 Th/s » 16x Frontier (22% CAGR)
I/O bandwidth 10-100 PB/s » 1000x Frontier (64% CAGR)
Storage capacity 1ZB » 1000x Frontier (64% CAGR)
Floor space 1000 m? » 2x Frontier (5% CAGR)

Moving from exascale to zettascale computing: challenges and techniques. Frontiers of
Information Technology & Electronic Engineering, 19(10):1236-1244.
https://doi.org/10.1631/FITEE.1800494 Front Inform Technol Electron Eng



Some 2028 and 2032 Planning Targets

8x Aurora
18.72  Fpe4
2028 — 10 EF (sim fp64) and >100 EF (Al bfp16 or fp8) 1872 P32
37.43 FP16
: . FP32-m
2032 - 50 EF (sim fp64) and >1000 EF (Al bfp16 or fp8) ;ggzg s
598.89 int8-m

A few questions we are pondering

* How achievable are these targets given roadmaps and vendor plans?
* Will Al accelerators (distinct from GPUs) make sense to integrate into

future nodes or as sub-clusters?

* When will or if quantum computing accelerators intersect
mainstream supercomputing? (IBM plans 100k qubits in 2033?)



Summary: Post-Exascale Directions

Push towards Al4S and hybrid Al/simulations
Data Driven Methods in General and Al for Science
ML Acceleration “Al surrogates” = 1000x = more
End-to-End Al alternatives to classical simulations
A long-term push on hardware towards Zettascale (2038 plausible)
1000x performance improvement over today’s Exascale Systems
Probably in 3 or 4 steps of factors of 5x-10x over 15-20 years
(Exascale was > 10 years from Petascale) Z is harder than E
Special purpose hardware for specific problems (Al, QC, etc.)
Brain scale Al (>100Trillion parameters) = Scientific Al
QC for Quantum Chemistry = Key Energy/Environment Challenges

e | Dlliceiol

‘ ENERGY Science
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Time for high-level machine intelligence
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Retail Salesperson -

Go (Same Training as Human) -
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(Bipedal Robot vs. Human)
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“Hard” jobs and Al

Years from 2016
0 25 50 75 100 125 150 175 200
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