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Some thoughts – Exa/AI/Qu/Zetta ⟹ EAZQ

• Exascale –  how did we get here and what do still have to deliver to 
make good on the promises we made
• AI – huge opportunity that is impacting nearly everything we will do 

going forward, but we need to own the AI and Science coupling
• Quantum – we probably need to curb the enthusiasm a bit, but what 

should we be doing to make history proud of us?
• Zetta – Progress towards Zetta needs to underpin the overall plan as 

the deep foundations need reinforcement and Q will not replace it
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Pre-exascale and Exascale US Landscape

System Delivery CPU + Accelerator Vendor

Summit 2018 IBM + NVIDIA V100

Sierra 2018 IBM + NVIDIA V100

Perlmutter 2021 AMD + NVIDIA A100

Polaris 2021 AMD + NVIDIA A100

Frontier 2021 AMD + AMD MI250x

Crossroads 2023 Intel

Aurora 2023 Intel + Intel PVC

El Capitan 2023 AMD + AMD MI300



Argonne Leadership Computing Facility8

Aurora
Leadership Computing Facility 
Exascale Supercomputer
Overview

≧ 2 Exaflops DP
Peak Performance

Intel® Data Center GPU Max 
Series 1550
Code named “PVC”

Intel GPU

Intel® Xeon® CPU Max Series with 
HBM
Code named “SPR+HBM”

Intel Xeon PROCESSOR

HPE Cray-Ex 
Platform

System Size
166 Compute Racks
10,624 nodes
21,248 CPUs
63,744 GPUs

Compute Node
2 CPU, 6 GPU
1 TB DDR5
1 TB HBM
8 Fabric NICs
Node Unified Memory Architecture

Aggregate System Memory
DDR5 10.9 PB, 5.95 PB/s
HBM CPU 1.36 PB, 30.5 PB/s
HBM GPU 8.16 PB, 208.9 PB/s

System Interconnect
HPE Slingshot 11 
Dragonfly topology with adaptive 
routing
2.12 PB/s Peak Injection BW
0.69 PB/s Peak Bisection BW

High-Performance Storage
220 PB
31 TB/s DAOS bandwidth
1024 DAOS nodes

Programming Environment
oneAPI

C/C++
Fortran
SYCL/DPC++
Python

Aurora MPICH and oneCCL
OpenMP offload
Kokkos, RAJA
Intel PerformanceTools, Intel gdb
Tensorflow, PyTorch
DDP, Horovod, DeepSpeed
oneDAL and ScikitLearn
Python Libraries
JupyterHub
Julia, Numba
Spark
MLDE, SmartSim





Delivering on Exascale Science

⟹  Large Number of Applications
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OpenMC (courtesy of John Tramm) 
https://docs.openmc.org

• OpenMC is being developed as part of the ECP ExaSMR project (PIs: Steven 
Hamilton, Paul Romano)

• OpenMC is a Monte Carlo particle transport code written in C++ and the 
OpenMP target offloading programming model

• The project seeks to accelerate the design of small modular nuclear reactors by 
generating virtual reactor simulation datasets with high-fidelity, coupled physics 
models for reactor phenomena that are truly predictive

• The Monte Carlo method employed by OpenMC is considered the "gold 
standard" for high-fidelity but these methods suffer from a very high 
computational cost. 

• The extreme performance gains OpenMC has achieved on GPUs is finally 
bringing within reach a much larger class of problems that historically were 
deemed too expensive to simulate using Monte Carlo methods. 

(Higher is better)
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CRK-HACC (courtesy Adrian Pope, Steve Rangel, Nick Frontiere)

ESP/HACC PI: Katrin Heitmann
ECP/ExaSky PI: Salman Habib
• CRK-HACC simulates the formation of large-

scale structures in the Universe over 
cosmological time. 

• CRK-HACC employs n-body methods for gravity 
and a novel formulation of Smoothed Particle 
Hydrodynamics.

• CRK-HACC is a mixed-precision C++ code, with 
FLOPS-intense sections implemented using 
architecture-specific programming models in 
FP32 precision.

• CUDA and HIP are maintained as a single source with macros.
• SYCL kernels were translated from CUDA using SYCLomatic and custom LLVM-

based tools, including optimizations for Intel GPUs.
• Figure-of-Merit (FOM) has units of particle-steps per second.
• Single GPU FOM problem used 33 million particles per GPU, and Intel PVC 

results are shown for both small (128) and large (256) General-purpose 
Register File (GRF) modes.

• Weak-scaling results are shown with the full application FOM, where the GPU 
represents roughly 80% of the total wall clock.



QMCPACK (courtesy Thomas Applencourt, Ye Luo, Jeongnim Kim)

• QMCPACK, is a high-performance open-
source Quantum Monte Carlo (QMC) 
simulation code. 

• Science case: computing the quantum 
mechanical properties of materials with 
benchmark accuracy, including for 
energy storage and quantum materials.

• QMCPACK uses C++ and OpenMP target 
offload, plus wrappers (eg SYCL) around 
vendor optimized linear algebra.

ECP Project PI: Paul Kent
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• Running `dmc-a512-e6144-DU64` problem. This simulates a supercell of nickel 
oxide with 6144 electrons and 512 NiO atoms total.

• Intel® Data Center GPU Max Series: 2 MPI ranks per GPU, 8 Walkers per rank,  64 
GB of HBM per stack. Using Intel(R) oneAPI DPC++/C++ Compiler 2022.12.30

• A100 (40GB): 1 MPI Rank, 7 Walkers. LLVM15 compiler.
H100: llvm/clang 17, cuda 11.8): 1 MPI Rank, 7 Walkers

• The Figure Of Merit (FOM) measure is throughput (walker moves/second). Higher 
is better.



XGC (courtesy Tim Williams, Aaron Scheinberg)

• Science case: Predict ITER fusion 
reactor plasma behavior with Tungsten 
impurity ions sputtered from the 
divertor

• Gyrokinetic particle-in-cell simulation 
of tokamak plasma using C++ and:
⏤Kokkos/SYCL on Intel GPUs
⏤Kokkos/HIP on AMD GPUs
⏤Kokkos/CUDA on NVIDIA GPUs

ESP Project PI: CS Chang
ECP Project PI: Amitava Bhattacharjee
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NWChemEx (Courtesy of Ajay Panyala)
https://github.com/NWChemEx-Project

l Single GPU, Time in seconds for DLPNO-CCSD per iteration
l Performance of SYCL on NVIDIA & AMD were comparable with 

native CUDA & HIP respectively

*Snapshot of Ubiquitin 
Protein

(Lower is better)

l Acknowledgment: Work performed by the NWChemEx team members without any 
architecture specific optimizations

• NWChemEx is a general purpose electronic 
structure code, which includes
– Array of high-fidelity coupled cluster methods
– Hartree-Fock, DFT, MP2 methods
– Reduced-scaling DLPNO formulation
– Molecular dynamics

• Programming models: C++, CUDA, HIP, SYCL
– Communication frameworks: Global Arrays, 

UPC++, MADNESS
– Tensor Contraction Engines: TAMM, 

TiledArray

• Key physics modules
– DLPNO-CCSD(T)

• Reduced-scaling implementation for 
GPU platforms

Performance on Single GPU

Strong Scaling 
Performance on 90-nodes

ESP & Project Project PI: Theresa Windus



LLM Mechanistic 
Constraints

Language model outputs 
predictions and insights that 
guide the formulation of 
constraints for the mechanistic 
(or simulation) model. 

Model 
Simulation

Dynamics, etc. parameters can be inferred from available dynamics 
data.

Simulation 
Results

Training Mechanistic Models 

Compare with 
Timeseries 

Data

𝜃∗

𝜃#$%&'(.

The constraints can encode 
specific experimental conditions, 
predicted/hypothetical 
interactions, associations, etc. 

The simulation results will capture behaviors 
(e.g., dynamics) that are not accessible by direct 
observation, but are supported by indirect 
observations, experiments, etc. 

By translating these simulation results to text 
we provide new simulation-supervised dataset 
that would improve the LLM. 

Simulation 
Results to Text 

AI Managed Sims

Prototyping this in the context of 
Radiation biology.. Cancer and space travel
Are the motivations
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On the road to AI for Science



DOE's Unique Position for AI Leadership
• Operates the most capable computing 

systems and the world’s largest collection of 
advanced experimental facilities

• Responsible for US nuclear security through 
deep partnerships across government

• Largest producer of classified and 
unclassified scientific data in the world

• Strongest foundation combining physical, 
biological, environmental, energy, 
mathematical and computing sciences

• Largest scientific workforce in the world
• Strong ties with private sector technology 

and energy organizations and stakeholders

Leadership in experimental facilities 
and supercomputers



AI for Science, Energy and Security
What changed in three years?

• Language Models (e.g. ChatGPT) released
• Artificial image generation took off
• AI folded a billion proteins
• AI hints at advancing mathematics
• AI automation of computer programming
• Explosion of new AI hardware
• AI accelerates HPC simulations
• Exascale machines start to arrive

2019 2022

2020 DOE Office of Science ASCR Advisory Committee report 
recommending major DOE AI4S program

Report posted here: 
https://www.anl.gov/ai-for-science-report 

https://www.anl.gov/ai-for-science-report


Workshops organized on six crosscutting themes

AI for advanced 
properties inference 
and inverse design

AI and robotics 
for autonomous 
discovery

AI-based surrogates 
for high-performance
computing

AI for software
engineering and
programming 

AI for prediction and 
control of complex 
engineered systems

Foundation, Assured AI 
for scientific 
knowledge 

Energy Storage
Proteins, Polymers, 
Stockpile modernization

Materials, Chemistry, Biology
Light-Sources, Neutrons 

Climate Ensembles
Exascale apps with surrogates
1000x faster => Zettascale now

Code Translation, Optimization
Quantum Compilation, QAlgs

Accelerators, Buildings, Cities
Reactors, Power Grid, Networks

Hypothesis Formation, Math
Theory and Modeling Synthesis, 



Foundation Models — What are they?

• Large scale model trained on large 
datasets from many sources (text, papers, 
datasets, code, molecules, etc.)

• Additional training to improve the human 
interaction experience (e.g., ChatGPT-4)

• Large models are remarkably flexible and 
exhibit emergent behaviors (capable of 
tasks not originally trained to do)

• Many hundreds of applications built on top

• There are early efforts underway in DOE labs 
to create Foundation Models explicitly 
targeting scientific discovery

Trained on trillions of input ”tokens”
for many weeks on a large-scale computers

SOTA models (GPT-4) have about 
1 trillion parameters (1% brain scale)

One Model ⟹ Many tasks



Since 2019 LLM model development has 
accelerated



Rapid Development of Large Language Models
Explosion of development of
LLM based AI systems since 
2019

Foundation Models are 
replacing narrow AI systems 
at a rapid pace

Foundation Models are the 
closest things that have yet 
been created that
hint at the possibility of 
Artificial General Intelligence



Foundation Models for Science — Opportunities
• FMs can summarize and distill knowledge – extract 

information from million of papers into compact 
computing representation – PPI networks, materials 
compositions, code kernels, biological function, etc.

• FMs can synthesize – combine information from multiple 
sources – generate small programs for specific tasks – 
quantum computing programs using QISkit & Cirq, 
derivations for applied physics, code for visualization and 
animation, etc. 

• FMs can generate plans, solve logic problems and 
write experimental protocols for robots – powering self-
driving labs, generate strategies for problem solving, and 
planning for testing hypotheses

• FMs with additional research, may be able to 
generate hypotheses to be tested and new theories 
for exploration – a full-time shared scientific assistant 
that learns from across all of science is possible

After experimenting with GPT-4 in our own research domains in materials chemistry, physics and quantum 
information, we find that ChatGPT-4 is knowledgeable, frequently wrong, and interesting to talk to. In other 
words, not unlike a college professor or a colleague. https://arxiv.org/pdf/2304.12208.pdf



Leveraging Community Efforts
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Scientific &
Engineering
Datasets

Mathematics
Biology
Materials
Chemistry
Particle Physics
Nuclear Physics
Computer Science
Climate
Medicine
Cosmology
Fusion Energy
Accelerators
Reactors
Energy Systems
Manufacturing

Exemplar DOE 
Mission Tasks

Autonomous
Experiments

Scientific
Discovery

Digital Twins

Inverse Design

Code Optimization

Accelerated
Simulations

Secure Data 
Infrastructure

Co-Design



It is likely that many 
of the use cases we 
imagine in the 
AI4SES report can 
be driven directly or 
indirectly from
sufficiently powerful 
Foundation Models



LLMs are already being used in many domains



Language models can Design Proteins
https://doi.org/10.1101/2021.07.18.452833; 
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GenSLM Foundation models reveal new 
biological insights on gene-level organization



The most capable models today are in the private 
sector (GPT-4, Claude, ChatGPT-3.5)

Large models with interesting emergent behavior



Assistant Models have been further
trained to act as helpful chatbots



AI Accelerated Post-Exascale Ecosystem
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Datasets
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Text and Code
Corpora

General Text
Social Media
News
Humanities
History
Law
Digital Libraries
OSTI Archive
Scientific Journals
arXiv
Code repositories
Laboratory Notes
PubMed
Agency Archives

DOE and NNSA Exascale Systems
Common AI Software Frameworks
Responsible AI Techniques
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DOE is developing a concept for a large-scale 
program to implement the AI4SES vision

               we call it

FASST: Frontiers of Ai for Science, Security and 
Technology



Dedicated access to computing and 
experimental facilities

Integrated science R&D for AI alignment, 
trust and responsibility

Crosscutting AI technologies  

Transformational hub-scale-centers on key AI4SES themes 
strong ties to program grand challenges 

Integrated Program to Advance Trustworthy AI: Public-Private 
Partnerships that Include Labs, Academia and Industry



Q





QUANTUM is it going to contribute?

• How to resolve if quantum can contribute meaningfully to solving REAL 
problems faster than CLASSICAL supercomputers
• Current state small QC machines, unreliable, “circuit” model for 

programming, lack of error correction, lack of a good number of killer apps 
(and superpolynomial speed up candidates), ad hoc integration strategies
• Target problems (Chemistry, Factoring) appear to require order a million 

qubits and billions of gate operations
• Today’s systems are order 100 qubits and 100 gate operations



Possible real targets

• Quantum Simulation (Hamiltonians), solving problems like many body 
electrons for larger systems than we can do classically, but that do not 
require data or extended systems of mechanics ( atomic reactions for small 
molecules and ground states, but probably not proteins and drug binding)
• Quantum Approximate Optimization Algorithms, approximately solving 

combinatorial optimization problems with various constraints on density, 
etc. 
• Quantum physics exploration, using quantum computers to explore QFT 

and related physics problems
• Algorithms research, the real impact may be simply from pushing on 

algorithms as hard as possible and seeing some flow from QC back to 
classical methods







What is the 100×100 
Challenge? In 2024, IBM plans 
to offer a tool capable of 
calculating unbiased 
observables of circuits with 
100 qubits and depth-100 gate 
operations in a reasonable 
runtime. 

IBM’s 100x100 Challenge



Due to its many applications in chemistry and materials science, 
this problem is widely regarded as the “killer application” of 
future quantum computers, a view that was supported by our 
first rigorous resource estimate study for the accurate 
calculation of electronic energies of a challenging chemical 
problem. 

Thousands of qubits
Billions to trillions of gates



Importantly, the architecture does not require all-to-all 
connectivity between N logical qubits. Instead, each logical 
qubit is connected to O(logN) other sites. 

Shor’s 2048 factoring 6 billion gates on 6200 logical qubits

Assuming about 3K physical qubits per logical qubit in SC, Ion systems



QUANTUM is it going to contribute?

• We need machines with 1,000’s of virtual-reliable qubits (1K-10K) able to 
run programs/circuits of depth O(1010)-O(1012) ⟹ > 1M physical qubits 
and ~ 2 weeks of running at  assuming ~us - ~ns clocks

• We need algorithms for problems with better than quadratic speedups

• We need use cases where the value of the Quantum computation is 
greater than the cost of obtaining that result







Can this be done?
1. Massive search for fast (superpoly) Q algorithms (O(1000) computer 

scientists for a decade :-) + AI
2. Government Commitments to field 2 or 3 > 1M qubit machines each 

leveraging a different approach to qubits, scaling, reliability and fault 
tolerance ($BILLION dollar machines)

3. Scale ⟹ Novel ways to connect and support active circuits, restrictive sets 
of operation, limitations on entanglement etc. 

4. Fab Paths ⟹ Superconducting, photons, Ions/Atoms, dots, Majorana, etc. 
5. Building Blocks and Interfaces ⟹ qubits, local/non-local comms, memory, 

control, classical interfaces etc.
6. Leadership QC systems are likely to be embedded in leadership class 

classical machines as all QC programs are hybrid 



We need are more “exponential” algorithms
• Loosely speaking quantum algorithms fall into two broad classes, 

those that provides a superpolynomial or exponential speedup (e.g. 
Shor’s) and those that are polynomial or less (e.g. Grovers) 
• Without superpolynomial speedup it will be hard to beat classical 

machines for any real problem instance [see recent papers]
• Many algorithms also have the challenge that they assume data is 

already present in a “state prepared” and superimposed form
• Without breakthrough in quantum data loading, many applications 

that need to process real data  at scale (AI, Operations Research, 
Biology, etc.) will be bottlenecked on loading data which is O(n) + 
O(…) to just load data and will be limited by coherence times to load 
data



Large-Scale QC systems are 
also likely to be
Large-Scale Classical Systems



American Scientist, Volume 102 

Quantum Computing Paradigms -- Mixed
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ZETTASCALE – or how we continue to make 
progress
• Nominal goal would be a system 1000x (fp64) todays EXA machines
• But EXA is not one thing (fp64 for classic sim, fp32, tf32, bfp16 for AI training, 

fp8, int8, in4 for AI inference) and of course int4 >> fp64
• Current EXA design points are 20x -- 40x faster for AI inference compared to 

fp64 GEMM
• MANY MANY OPEN ISSUES (power, bandwidth, memory, interconnect)

• representation flexibility – from 128-bit to 1-bit formats
• effective scalar-vector-matrix-tensor modes
• Throughput vs latency, memory hierarchy, levels of aggregation micro-macro
• do ISAs matter? can we do better than x86 or ARM or is even necessary
• Can we cheat on software using JAX like HLL binding to LL-ops 



Some very high-level questions to consider

How much high-precision capability do we need for 
scientific problems?

Will AI driven surrogates be the dominate approach for 
simulations in the 2030’s?

Can we improve on sustainability of systems?



We are not the only ones thinking about Zetta



Moving from exascale to zettascale computing: challenges and techniques. Frontiers of 
Information Technology & Electronic Engineering, 19(10):1236-1244. 
https://doi.org/10.1631/FITEE.1800494 Front Inform Technol Electron Eng

NUDT group proposes
Zettascale by 2035

Ø 600x Frontier (58% CAGR)
Ø 3.4x Frontier (9% CAGR)
Ø 200x Frontier (46% CAGR)
Ø 66x Frontier (=> 10x nodes)
Ø 16x Frontier (22% CAGR)
Ø 1000x Frontier (64% CAGR)
Ø 1000x Frontier (64% CAGR)
Ø 2x Frontier (5% CAGR)

PROGRESS REQUIRED



Some 2028 and 2032 Planning Targets

2028 – 10 EF (sim fp64) and >100 EF (AI bfp16 or fp8)

2032 – 50 EF (sim fp64) and >1000 EF (AI bfp16 or fp8)

A few questions we are pondering
• How achievable are these targets given roadmaps and vendor plans?
• Will AI accelerators (distinct from GPUs) make sense to integrate into 

future nodes or as sub-clusters?
• When will or if quantum computing accelerators intersect 

mainstream supercomputing? (IBM plans 100k qubits in 2033?)

FP64
FP32
FP16
FP32-m
BFP16-m

int8-m

Aurora



Summary: Post-Exascale Directions
Push towards AI4S and hybrid AI/simulations
 Data Driven Methods in General and AI for Science
 ML Acceleration ”AI surrogates” ⟹ 1000x ⟹ more
 End-to-End AI alternatives to classical simulations
A long-term push on hardware towards Zettascale (2038 plausible)
 1000x performance improvement over today’s Exascale Systems
 Probably in 3 or 4 steps of factors of 5x-10x over 15-20 years
 (Exascale was > 10 years from Petascale) Z is harder than E
Special purpose hardware for specific problems (AI, QC, etc.)
 Brain scale AI (>100Trillion parameters) ⟹ Scientific AI
 QC for Quantum Chemistry ⟹  Key Energy/Environment Challenges 



EAZQ





Time for high-level machine intelligence





“Hard” jobs and AI


