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FUNDAMENTAL CHALLENGES IN COMPUTING 

• Limits of scaling have ushered in the 
“Golden Age of Computer Architecture” 
Hennessy & Patterson 2019

• Inefficiency of generality

• Performance saturation

• Growing demands for HPC and SWaP-
constrained edge computing

Neuromorphic Computing gives a path forward for 
power efficiency scaling and meeting future 

computing needs.  

AI compute demands 
are increasing

Mehonic & Kenyon 
2022, Open AI 
Research Blog
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CPUs GPUs FPGAs ASICs Neuromorphic Quantum TPUs

Novel Computing ParadigmsConventional Digital

Modern Computing

ApplicationsSensors Algorithms

• Scientific Computation

• Machine Learning

• Brain-derived algorithms

• Signal Processing

GT Neuron DAVIS 240C, 

DYNAPSEL
Intel Loihi SpiNNaker

Analog/Mixed-signal NeuromorphicDigital Neuromorphic Beyond CMOS devices

COMPUTING LANDSCAPE 

Mott- Memristor
Kumar et al., 2020

RERAM
Marinella et al., 2016

NeuroGrid

50 billion IoT devices by 2030

Davies 2018 Furber 2016 Brink 2013 Benjamin 2014

3



NEUROMORPHIC COMPUTING: INSPIRED BY THE BRAIN

Brain and Computing: Why make the connection ?
 High computational efficiency, Single neuron ~1MMAC/pW

 Processing and memory operations performed by the same 
components

 Self-organizing system

 Online learning

 Solving ill-structured problems

 Transfer learning

 Spiking/event driven communication, subthreshold 
computation

1MMAC/(s)/p
W

1MMAC/(s)/uW

1MMAC/(s)/mW

Analog/ 
Compute-in-

memory 
techniques

Neuromorphic 
techniques

Neuromorphic techniques will be disruptive to how 
we develop our computing systems

MMAC: Million Multiply 
Accumulates

Hasler 2016
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NEUROMORPHIC COMPUTING: DIVERSE SOLUTIONS

GT 
Neuron

INI, ETH ZurichIntel Loihi/ 
Loihi 2.0

SpiNNaker/ 
SpiNNaker 2

Analog/Mixed-SignalDigital Neuromorphic Beyond CMOS 
Devices

IBM TrueNorth

Stanford Neurogrid

Mott- Memristor ECRAM

RRAM Crossbar MTJ

Brink et al., 2013

NeuRRAM
UCSD/Tsinghua 

ODIN (Open-source)

SNL hosts Intel’s 50 
million neural 

supercomputer

Scaled to a billion 
neurons
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NEUROMORPHIC BUILDING BLOCKS

Neuromorphic offers computational 
richness we can leverage, to move 

beyond today’s computational 
limitations. 

Analog Crossbars using 
NVMs

Learning Synapses

APPLICATIONS

Brain-inspired 
algorithms

Scientific 
Computing

AI/ML (ANN, SNN)

Neural Path 
Planning

Koziol et al. 
2013

Edge Computing

Many different 
models for neurons, 

synapses, online 
learning and 

dendrites.

Silicon Cochlea

Winner-Take-All

Silicon Retina/ Event Sensor 

George Cardwell et al. 
2013

Dendritic Processing

Random Walks
Smith et al. 2021

Lazzaro et al. 
1988

Posch et al. 2014Liu  et al. 2020

Delbruck  et al. 
2020
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CHALLENGE: SCALABILITY VS. COMPLEXITY

However, to achieve brain-like 
complexity we need both scaling 
and rich dynamics.

 Solving ill-structured problems

 Online learning

 Transfer learning

Scalability (# of Neurons, Synapses)

Intel Loihi
100 Million 
neurons

IBM TrueNorth
1 Millions

Stanford NeuroGrid 
1 Million Neurons

Dragonfly Brain
1 Million Neurons

Mouse Brain
(100 Million)

Analog 
Neuromorphic Huge 

Gap

B
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Human Brain
(100 Billion)

Understanding fundamental 
mechanisms in neuroscience, 

translated to algorithms and models 
will influence next-generation 

devices, architectures and  intelligent 
computing systems
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INCREASING “BIOLOGICAL COMPLEXITY”

LIF neuron
• Single passive compartment
• Spikes
• Limited dynamics
• Relatively easy to scale

Biological neuron
• Dendrites = intricate structure and 

dense connectivity
• Complex pattern of active conductances 
• Rich dynamics , multiple patterns of 

spiking, subthreshold computation
• More computational power, not 

compact 

Novel devices and materials 
can help bridge this gap.

Increase computational efficiency 
and

Increase computational density

LIF: leaky Integrate and Fire
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DENDRITIC TOOLKIT FOR COMPUTATION

Dendrites are tree-like structures that 
connect neurons synapses to its soma.

Dendrites are not just wires!

They can perform interesting computation 
like:

 Coincidence Detection

 Current Summation

 Directional selectivity

 Non-linear filtering

 Amplification of Synaptic inputs

London 2005, Poirazi 2020

Increased Connectivity and 
Computation
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SINGLE NEURON MULTIPLICATION

Leveraging Inhibition

NMDA /Ca 

Schemmel, Johannes, et 
al. , IEEE IJCNN, 2017.

Dendrites with Active Channel,
Ramakrishnan et al., IEEE 

TBIOCAS, 2013.

Shunting Inhibition/ 
Leveraging Leakage 

Conductance

Groschner et al., Nature 2022
Lobula giant movement 

detector (LGMD) of locusts

Gabbiani et al., Nature 2002

Multiplication based on dendritic 
subtraction of two converging inputs 
encoded logarithmically, followed by 

exponentiation through active 
membrane conductances.
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SINGLE NEURON MULTIPLICATION

Devices & 
Circuits

Algorithms Physics of 
Computing

Shunting Inhibition in 
Neuromorphic Dendrite

Chance & Cardwell
NICE 2023

Lu et al. 2022
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NEUROMORPHIC CODESIGN

Gonzalez-
Bellido, UMN

Chance 2020 
SNL, Baylor

Devices & 
Circuits

Algorithms Physics of 
Computing

Coordinate transformations from Dragonflies to Neuromorphic Hardware

Davies 2018George 
Cardwell 2016

Lead PI: Frances Chance, SNL

Increased collaboration between neuroscience and 
neuromorphic engineering will facilitate  development 

of novel neural-inspired architectures. 

DRAGONFLY 
EXPERIMENTS

COMPUTATIONAL 
MODEL

NEUROMORPHIC 
IMPLEMENTATION

August 2021

GT FPAA Intel’s Loihi

October 2021

DOE ASCR (FY21-24)

Department of Energy
Advanced Scientific Computing Research
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DRAGONFLY WITH DENDRITES

peak input (A)

o
u

t 
(V

)

Shunt Input out

Excitatory 
Input

Raxial

Cleakage
Rleakage

Vmem

Vleakage

Vaxial

Sub-threshold region of 
operation
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DRAGONFLY INTERCEPTION WITH DENDRITES

𝑆𝑖𝑗 = 𝑓𝑖 𝑥 𝑔𝑗 𝑦

Multiplication in 
Dendrites

Sensorimotor 
Dendrites Response
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Cardwell & Chance 
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DIRECTION-SELECTIVE DENDRITES

Nahuku (Loihi Chips) 
Davies 2018

UP

DOWN
15

Cardwell & Chance ICONS 23

Event Sensor Output



DIRECTION-SELECTIVE CELLS FOR COMPLEX PATTERNS

Steinmetz et al. 2022

MT (Middle Temporal)

dorsal medial 

superior temporal
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CHALLENGE: CODESIGN TOOLS

AI-Enhanced 
Codesign 

Reinforcement 
Learning/Evolution
ary for Circuit and 

System design

Co-Design Tools for Novel 
Architectures

Next-generation Neuromorphic 
Architectures

COINFLIPS
Probabilistic Neural 

Computing, 
Leverage stochasticity in 
beyond-CMOS devices

DOE ASCR/BES (FY21-24)SNL LDRDs (FY21-23)

DRAGONFLY 
Dendritic processing, 

Coordinate transformation 
from Dragonflies to 

Neuromorphic hardware,

DOE ASCR (FY21-24)

External Collaborators: UT Austin, Intel, NCSU, Infineon Memory Solutions, Georgia Tech, 

UMN, Baylor University, UT Knoxville, Temple University, NYU, ORNL

ASC-AML (FY20-22)

SANA-FE
Neuromorphic

Architecture 
Exploration

ATHENA
Analytical Tool for 

analog and 
neuromorphic
ML accelerator

SNL LDRDs (FY21-24)
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ATHENA : ANALYTICAL TOOL TO EVALUATE 
HETEROGENEOUS NEUROMORPHIC ARCHITECTURES

 ATHENA will quickly evaluate 
performance metrics of analog 
architectures

 Developed as part of a larger 
ecosystem

 Tools to enable next-
generation hardware design 
prototyping.

Digital Accelerators Novel Computing

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022
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ATHENA – HARDWARE PERFORMANCE

• ATHENA was used to compare the 
performance of multiple hardware 
devices against various deep 
learning networks

• The SONOS tile-based architecture 
performed well across networks, 
with one notable exception: the 
Inception v3 network

• This performance difference could 
be explored – showing ATHENA’s 
potential for codesign work. 

• In the process of making ATHENA 
open-source.

Plagge et al., International Conference on 
Rebooting Computing (ICRC) 2022
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SANA-FE: Simulating Advanced Neuromorphic Architectures for 
Fast Exploration

Boyle et al., ICONS 2023
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SANA-FE
UT Austin Collaboration



SPIKING ARCHITECTURE TEMPLATE

Tile-based architecture

 Network-on-chip connecting neural cores

Many cores per tile

 Cores simulate group of mapped neurons

 Local shared memory

Core pipeline

 Axon stage

 Synapse stage

 Dendrite stage

 Soma stage
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CHALLENGE: ARCHITECTURE DESCRIPTION
Describes different H/W architectures

 Represents different existing & future spiking 
designs based on common features

 Defines compute elements of chip

 YAML-based, flexible & extensible

architecture:

name: demo

tile:

- name: demo_tile[0..7]

attributes:

energy_east_west: 1e-12

latency_east_west: 2e-9

...

core:

- name: demo_core[0..3]

soma:

- name: core_lif

attributes:

energy_spiking: 68e-12

latency_spiking: 30e-9

...

Boyle et al., ICONS 2023
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PERFORMANCE MODELING RESULTS

For randomized spiking inputs on the application SNN 

 Detailed breakdown of on-chip activity on Loihi

 Captures dynamic energy and latency trends

Detailed insight into H/W behavior Boyle et al., ICONS 2023
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RESULTS FOR OTHER NEUROMORPHIC BENCHMARKS

Image reproduced from [Massa,’20]

Predict performance & energy for larger real-world 
neuromorphic applications

 SNN trained on DVS gesture data-set

 18,678 neurons across 6 layers

 Mapped to 45 Loihi cores out of 128
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SIMULATOR SPEED RESULTS

• Compared to existing spiking simulator (NeMo)

• Simulating IBM TrueNorth architecture

• Randomized SNN with 80% of spikes intra-core, 20% spikes between 
cores

• Over 10x faster than NeMo for 1024 cores
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SANA-FE

Generic & extensible
 User-defined architecture & SNN

 Supports range of spiking architectures

Fast & accurate
 Time-step based approach

 Detailed hardware activity for each time-step

 Accurately estimates performance & energy

Future work
 Support other existing architectures & scale to larger designs

 Adapt other neuromorphic benchmark applications

 Model analog architectures & novel devices

 Integrate with other frameworks e.g., SST, Fugu & Lava

Access at: https://github.com/SLAM-Lab/sana-fe

Prof. Andreas Gerstlauer’s SLAM Lab @ UT Austin

Boyle et al., ICONS 2023
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AI-ENHANCED CODESIGN: COINFLIPS 

Lead PI: Brad Aimone

Microelectronics Codesign 
Award DOE ASCR/BES (FY21-24)

Department of Energy
Advanced Scientific Computing Research

Basic Energy Sciences

https://coinflipscomputing.org/Collaborators: NYU, ORNL, Temple University, UT-
Austin and UT-Knoxville
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AI-GUIDED CODESIGN OF PROBABILSITIC CIRCUITS

Unfair coins can be combined with AI-designed 
neural circuits to allow sampling of application 
desired probability distributions, avoiding 
accept/reject steps.

We leveraged evolutionary algorithms for circuit 
design and optimization

 LEAP (Library of Evolutionary Algorithms in
Python)

 EONS (Evolutionary Optimization for
Neuromorphic Systems)- Schuman et al. , 2020 

We used abstracted device models for TD and MTJ 
to capture functionality and energy usage.

AI-Guided Approach 

Cardwell et al., International Conference on 
Rebooting Computing (ICRC) 2022

28



AI-GUIDED CODESIGN OF PROBABILSITIC CIRCUITS29

Weights are customized for the 
device’s behavior to target the best 
performance in terms of KL 
divergence and energy usage.

One of the challenges in optimizing 
for both algorithms and devices was 
appropriately abstracting the device 
models and algorithmic constraints. 

The functional models developed
will also be evolved in time as new 
device data and research emerges. 

Our framework can accommodate 
any emerging device type.

Optimized weight values for each device

Cardwell et al., International Conference on 
Rebooting Computing (ICRC) 2022 

Probabilistic Mixing Algorithm 

Multi-objective optimization of weights of fitness function for 
optimal KL divergence, biased weight and energy usage.



AI-ENHANCED CODESIGN: NEURAL CIRCUITS30

We developed an RL algorithm approach which is capable of building very 

simple circuits.  

Simple 
delay line

Pattern 
Detection

Devices & Circuits

Algorithms

Physics of 
Computing
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Training time to > 99% success

Crowder et al. 2023 (MWCAS 2023)



NEUROMORPHIC APPLICATIONS31

Probabilistic 
Computing
COINFLIPS

Heterogeneous 
Computing

Applications

Brain-inspired 
Algorithms
Dragonfly

Dendritic Processing

Scientific 
Computing

• Random Walks
• High-fidelity Physics

Simulations

AI/ML 
Applications

ANNs
SNNs

Edge Computing
• Event sensors

• Spatio-temporal 
processing



CHALLENGES FOR NEXT-GENERATION OF 
NEUROMORPHIC SYSTEMS

32

• How can AI-enhanced techniques 
accelerate scientific discovery?

• Different AI techniques at the 
device, circuit, system design and 
architecture level.

• Enable encoding of domain 
knowledge

• Enable concurrent contribution 
from researchers 

• Leverage the physics of devices to do 
computation (analog)

• Embrace stochasticity of devices
• Analog devices are noisy. How can we 

incorporate this into algorithms?

• Algorithms are cognizant of architecture 
and device constraints.

• Leverage the complex dynamics of 
devices.

• Bio-inspired techniques, adoption in 
computing

• Novel devices with complex dynamics 
• Radiation-hardened devices
• Reconfigurable devices
• Computational efficiency and 

computational density

• Software tools to support 
design and development

• Integration with AI-enhanced 
techniques?

• Heterogeneous architectures
• CoDesign to optimize communication and 

memory bottlenecks
• 3D architectures, Photonics



THANK YOU!!
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Neuromorphic 
Accelerators

Heterogeneous 
Architectures 

Quantum 
Computing

Emerging 
memory

5-10 years 15-20 years

Extremely 
Heterogeneous

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

ANY ANY

Limits of scaling have 

ushered in the ‘Golden 

Age of Computer 

Architecture’

FUTURE OF COMPUTING: HETEROGENEOUS ARCHITECTURES

‘Truly Heterogeneous Computing’, Cardwell et al., SMC 2020

Co-Design is critical to build the next-generation heterogeneous systems
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DENDRITE MODELING

Raxial

Rleakage Cleakage

Vmem

DENDRITES Resistor-Capacitor Circuit 

Raxial

CleakageRleakage

Vmem

Vleak

Vaxial

CMOS-transistor based 
Dendrite

Nease et al.  2011

Rall’s Cable 
Model
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COINFLIPS APPLICATION: NUCLEAR PHYSICS SIMULATIONS

For a particular collider physics simulation 
[Pierog et al., Phy Rev. 2022], ~ 270K 
pseudo- random numbers needed for a 
single event, with billions of events 
needing to be simulated. 

CPU time is ~ 30-50% of the total compute 
time

Direct random number generation 
leveraging stochastic devices can promise 
significant energy savings for such 
applications

56
Fe+

14
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Misra et al., Advanced Materials 2022

Random numbers are a limiting computational cost for 
some nuclear physics applications
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