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FUNDAMENTAL CHALLENGES IN COMPUTING
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are increasing

Neuromorphic Computing gives a path forward for

power efficiency scaling and meeting future
computing needs.

2022, Open Al
Research Blog



‘ COMPUTING LANDSCAPE
3
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Algorithms
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NEUROMORPHIC COMPUTING: INSPIRED BY THE BRAIN

TMMAC/(s)/p
W

Brain and Computing: Why make the connection ? Neuromorphic
= High computational efficiency, Single neuron ~1TMMAC/pW techniques

= Processing and memory operations performed by the same
components

= Self-organizing system TMMAC/(s)/uW

= Online learning
= Solving ill-structured problems Analog/
, Compute-in-
= Transfer learning memory
= Spiking/event driven communication, subthreshold A techniques
computation TMMAC/(s)/mW Hasler 2016 |
Neuromorphic techniques will be disruptive to how
we develop our computing systems |

MMAC: Million Multiply
Accumulates I



s 1 NEUROMORPHIC COMPUTING: DIVERSE SOLUTIONS

Digital Neuromorphic Analog/Mixed-Signal Beyond CMOS
. . Devices
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‘ NEUROMORPHIC BUILDING BLOCKS
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Many different
models for neurons,
synapses, online
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dendrites.

Neuromorphic offers computational
richness we can leverage, to move
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Winner-Take-All

limitations. n—/———
Dendritic Processing Neural Path %32828”0 etal
Modelini?sing CMD?Itransistorl:-'.\:\ P I a n n i ng
_ :". e Random Walks
‘ -|-_F-J (M) Smith et al. 2021
—I‘I" ||-|- 1
Koziol et al.
2013

George Cardwell et al.
2013

Silicon Cochlea

Cochlea
Analog BPFs P

Event Encoders

g MMEJ':H;.‘E‘ Event-
% /\i\//:w‘..‘ “ Processor
Liu et aI.2020 Posch et aI 2014

S|I|con Retlna/ Event Sensor

Delbruck et a
"’,Q 2020

APPLICATIONS

Al/ML (ANN, SNN)

Brain-inspired
algorithms

Scientific
Computing

U
f <\,
VAN

Edge Computing




7 ‘ CHALLENGE: SCALABILITY VS. COMPLEXITY

Biological Complexity

Human Brain

Mouse Brain g
Dragonfly Brain (100 Million) (100 B'”'w
1 Million Neurons .

-

Analog [
uromorphic I Huge
. Stanford NeuroGrid Gap
1 Million Neurons |

v
Intel Loihi
IBM TrueNorth 100 Million

illions

neurons

Scalability (# of Neurons, Synapses)

However, to achieve brain-like
complexity we need both scaling
and rich dynamics.

= Solving ill-structured problems
= Online learning
= Transfer learning

Understanding fundamental
mechanisms in neuroscience,
translated to algorithms and models
will influence next-generation
devices, architectures and intelligent
computing systems




s 1 INCREASING “BIOLOGICAL COMPLEXITY"

Increase computational efficiency

I and

Increase computational density

Novel devices and materials
can help bridge this gap.

LIF neuron Biological neuron
« Single passive compartment  Dendrites = intricate structure and
* Spikes dense connectivity
* Limited dynamics « Complex pattern of active conductances
- Relatively easy to scale * Rich dynamics, multiple patterns of |
spiking, subthreshold computation
« More computational power, not |

LIF: leaky Integrate and Fire compact I



o 1| DENDRITIC TOOLKIT FOR COMPUTATION

Dendrites are tree-like structures that
connect neurons synapses to its soma.

Dendrites are not just wires!

They can perform interesting computation
like:

= Coincidence Detection

= Current Summation

= Directional selectivity

= Non-linear filtering

= Amplification of Synaptic inputs I
Increased Connectivity and |

London 2005, Poirazi 2020 Computation



‘ SINGLE NEURON MULTIPLICATION

Groschner et al., Nature 2022

Leveraging Inhibition

Shunting Inhibition/
Leveraging Leakage
Conductance
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Multiplication based on dendritic I
subtraction of two converging inputs
encoded logarithmically, followed byI

exponentiation through active
membrane conductances. I



1 ISINGLE NEURON MULTIPLICATION

from fan-shaped body of Drosophila brain
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firing rate

R = A*f(x)

firing rate

R=1f(x)-A

stimulus

Chance & Cardwell
NICE 2023
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Algorithms ~ Devices & Physics of
Circuits Computing
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> | NEUROMORPHIC CODESIGN 00 O

Algorithms Devices &  Physics of
Circuits ~ Computing

Coordinate transformations from Dragonflies to Neuromorphic Hardware

Lead PIl;: Frances Chance, SNL

GT FPAA Intel's Loihi

George Davies 2018
—— = Cardwell 2016
Gonzalez- Chance 2020 A Haner y
Bellido, UMN SNL, Baylor
DRAGONFLY COMPUTATIONAL — &= NEUROMORPHIC
EXPERIMENTS MODEL IMPLEMENTATION

=%, U.S. DEPARTMENT OF Office of

Increased collaboration between neuroscience and &) ENERGY  sconco
neuromorphic engineering will facilitate development DOE ASCR (FY21-24)
of novel neural-inspired architectures. Department of Energy

Advanced Scientific Computing Research




Sensorimotor

13 ‘ DRAGONFLY WITH DENDRITES | DEnHES
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DRAGONFLY INTERCEPTION WITH DENDRITES

Sensorimotor

Dendrites Sensorimotor
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Input ,
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s | DIRECTION-SELECTIVE DENDRITES

Inputs
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s | DIRECTION-SELECTIVE CELLS FOR COMPLEX PATTERNS
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Steinmetz et al. 2022



7 I CHALLENGE: CODESIGN TOOLS

Co-Design Tools for Novel Next-generation Neuromorphic
Architectures Architectures

ZEH £
" clomeccrd. v,
ATHENA SANA-FE Al-Enhanced COINFLIPS DRAGONFLY
Analytical Tool for Neuromorphic Codesign Probabilistic Neural Dendritic processing,
analog and Architecture  Reinforcement Computing, Coordinate transformation
neuromorphic Exploration Learning/Evolution Leverage stochasticity in from Dragonflies to
ML accelerator ary for Circuitand beyond-CMOS devices Neuromorphic hardware,
System design I
ASC-AML (FY20-22) SNL LDRDs (FY21-24) SNL LDRDs (FY21-23) DOE ASCR/BES (FY21-24) DOE ASCR (FY21-24)

External Collaborators: UT Austin, Intel, NCSU, Infineon Memory Solutions, Georgia Tech, I
UMN, Baylor University, UT Knoxville, Temple University, NYU, ORNL I



ATHENA : ANALYTICAL TOOL TO EVALUATE

18

= ATHENA will quickly evaluate
performance metrics of analog
architectures

= Developed as part of a larger
ecosystem

= Tools to enable next-
generation hardware design

prototyping.

Plagge et al., International Conference on
Rebooting Computing (ICRC) 2022

HETEROGENEOUS NEUROMORPHIC ARCHITECTURES

o

| 1

[ Input problem description, Hardware configurations }
Analytical [ ] _______ ™ Mapping
Tools I ATHENA I _\
(Approximate | Cost Model ‘
Modeing) | ] \[_ — l[_ — _,‘*‘ ZROSS SIM | A
ATHENA-SST
(- T T T TS T T T T T T TS Integration Tool
I‘ﬁ Structural Simulation |

Cycle-Accurate
Tools

Hardware
Backend

|
I Toolkit
|

 Dataflow Jl Amiog Jil Spikine |

o o o O T T S S S S S e e e .

Digital Accelerators Novel Computing
Leillzr Neuromorphic Analog/

Accelerator Beyond- CMOS

This

Work I




Energy (pJ)

ATHENA - HARDWARE PERFORMANCE \@i

Hardware
B SONOS Tile
I Eyeriss Accelerator
I NVDLA-Like
B Memristor-Based Crossbar

Shufflenet v2 AlexNet DenseNet 201
Network

Plagge et al., International Conference on
Rebooting Computing (ICRC) 2022

i Y
AsC

ATHENA was used to compare the
performance of multiple hardware
devices against various deep
learning networks

The SONOS tile-based architecture
performed well across networks,
with one notable exception: the
Inception v3 network

This performance difference could
be explored - showing ATHENA's
potential for codesign work.

In the process of making ATHENA
open-source.



SANA-FE: Simulating Advanced Neuromorphic Architectures for |
20 I Fast Exploration

Configuration & Input Spikes Architecture
¢ Description
Hardware Simulator
build architecture

initialize network

for all timesteps:
get external inputs
for all neurons
process neuron
receive messages

Mapped Spiking

UT Austin Collaboration estimate energy, latency

H
H Y H
| Vi .
) 0 .
* 4 .
0 - .. o
“amnns?®

Performance & Energy
Estimates

Boyle et al., ICONS 2023 |



21 P SPIKING ARCHITECTURE TEMPLATE

Tile-based architecture
= Network-on-chip connecting neural cores

Many cores per tile
= Cores simulate group of mapped neurons

= Local shared memory

Core pipeline
= Axon stage
= Synapse stage
= Dendrite stage

= Soma stage

Neuromorphic Chip
Tile O Tile 1 Tile 2 Tile 3
00 00 00 00
00 00 00 00
Tile4 | i[Tiles | i[Tiles |i[Tie7]:
QO | i OO 00 00 |:
00 |4 OO0 00 [:
e S ——— :
------- BT S
_____ —-""Core ——l
Axon In Synapse Dendrite Soma Axon Out
Unit Unit Unit Unit Unit
i W ( ) 0
A . > [ O S —-<-- Z 't A 1-A'
i2 W2 OZ_A
: : L X :
. —
Ik Wm On
\_




CHALLENGE: ARCHITECTURE DESCRIPTION

Describes different H/W architectures

= Represents different existing & future spiking
designs based on common features

= Defines compute elements of chip
= YAML-based, flexible & extensible

Demo

-
-
-
-
-
-
-
-
-
-
PR
-

T|Ie 0 I l Tile 1

-----
-
-—

sy

-

-
-
______
-
=

/ demo_core h\
—p axon in [P Synapse | dendrite —>| soma [ axon out —P

architecture:
name: demo
tile:
- name: demo tile[O0..7]
attributes:
energy east west: le-12
latency east west: 2e-9

core:
- name: demo core[0..3]
soma:
- name: core 1lif
attributes:
energy spiking: 68e-12
latency spiking: 30e-9

Boyle et al., ICONS 2023



3 | PERFORMANCE MODELING RESULTS

For randomized spiking inputs on the application SNN
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= Detailed breakdown of on-chip activity on Loihi
= Captures dynamic energy and latency trends

»Detailed insight into H/W behavior Boyle et al., ICONS 2023 |



RESULTS FOR OTHER NEUROMORPHIC BENCHMARKS

Predict performance & energy for larger real-world
neuromorphic applications

= SNN trained on DVS gesture data-set
= 18,678 neurons across 6 layers
= Mapped to 45 Loihi cores out of 128

frame accumulatlon Average

Poohng
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\tim
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25 ‘ SIMULATOR SPEED RESULTS

« Compared to existing spi

500

Run-time (s)
w
o
o

N
o
o

0

« Simulating IBM TrueNorth architecture
« Randomized SNN with 80% of spikes intra-core, 20% spikes between

cores

King simulator (NeMo)

o

N
o
o

=
o
o

B SANA-FE
. NeMo
p— _—
32 64 128

Over 10x faster than NeMo for 1024 cores

256

TrueNorth Core Count

512

]
1024 |
|



s 1| SANA-FE

Generic & extensible
= User-defined architecture & SNN

= Supports range of spiking architectures

Fast & accurate
= Time-step based approach

= Detailed hardware activity for each time-step
= Accurately estimates performance & energy

Future work
= Support other existing architectures & scale to larger designs
= Adapt other neuromorphic benchmark applications
= Model analog architectures & novel devices
= Integrate with other frameworks e.g., SST, Fugu & Lava

Access at: https://github.com/SLAM-Lab/sana-fe
Prof. Andreas Gerstlauer's SLAM Lab @ UT Austin

Configuration & Input Spikes

o

v

Hardware Simulator

build architecture
initialize network

for all timesteps:
get external inputs
for all neurons
process neuron
receive messages

estimate energy, latency

Architecture
Description

N

v

Mapped Spiking
Neural Network

Performance & Energy
Estimates

Olgs:

O e

Boyle et al., ICONS 2023 I


https://github.com/SLAM-Lab/sana-fe

27 ‘ Al-ENHANCED CODESIGN: COINFLIPS

Lead PIl; Brad Aimone

$3t* INSPIRATION/MOTIVATION

We have deterministic computing
covered...We need probabilistic
computing technologies
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Every synapse in the
brain is a stochastic

“coinflip”

Microelectronics Codesign
Award DOE ASCR/BES (FY21-24)

Department of Energy
Advanced Scientific Computing Research
Basic Energy Sciences

Collaborators: NYU, ORNL, Temple University, UT-

Co-design is proving invaluable in developing a

(%]

-t

<

o<

=
<«
=

CO-DESIGN APPROACH ON NEW
ENERGY-EFFICIENT MICROELECTRONICS

novel paradigm for microelectronics

SOISAHd

Austin and UT-Knoxville

U.S. DEPARTMENT OF Ofﬁce of I

090

COINFLIPS

Probabilistic Neural
Theory & Algorithms

w>

Tunable Stochastic
Devices

Probabilistic
Architectures

Particle Physics
Demonstration

Circuits &

e EN ERGY Science

https://coinflipscomputing.org/



https://coinflipscomputing.org/

2 ‘ Al-GUIDED CODESIGN OF PROBABILSITIC CIRcuITs [0 Y &[G

[[ﬂ]hhm SN

Desire Non- Unlform

Accept / Reject

lforrn/

Sample Non-Uniform

-

\

Al-Guided Approach

i

Desire Non-Uniform O O O O

|:[| Flip Biased Coins N\ &

Sample Non- Umform

\

%

neural circuits to allow sampling of application
desired probability distributions, avoiding
accept/reject steps.

Unfair coins can be combined with Al-designed ‘

We leveraged evolutionary algorithms for circuit
design and optimization

= LEAP (Library of Evolutionary Algorithms in
Python)

= EONS (Evolutionary Optimization for
Neuromorphic Systems)- Schuman et al., 2020

We used abstracted device models for TD and MT]

to capture functionality and energy usage. I
Cardwell et al., International Conference on I
Rebooting Computing (ICRC) 2022



o I AlI-GUIDED CODESIGN OF PROBABILSITIC CIRCUITS m

LT

D —— - - Weights are customized for the
! ‘ ) °  device's behavior to target the best
Pitohl= BsllEnd=dl=g: & ¢  performance in terms of KL
S «}  divergence and energy usage.
s e e oiries wmaoee ™ Oneofthe challenges in optimizing
Probabilistic Mixing Algorithm Optimized weight values for each device for bOth.a|80r|thm5 an.d dEV|CeS V\.laS
appropriately abstracting the device
L5 amnt T Cammn F  C models and algorithmic constraints.
oyt iy Lon i The functional models developed
Joni ol §on s g o will also be evolved in time as new
o e, b - R I device data and research emerges.
Multi-objective optimization of weights of fitness function for Our framework Ca.n accommOdate I
optimal KL divergence, biased weight and energy usage. any emerg“’]g deV|Ce type.

Cardwell et al., International Conference on
Rebooting Computing (ICRC) 2022



|
50 I AI-ENHANCED CODESIGN: NEURAL CIRCUITS m

€

We developed an RL algorithm approach which is capable of building very
simple circuits. )~

Si mple Pattern Algorithms
delay line Detection
In2 3 In4

In
Tap 3 ~— Tap4 |—
Tap2 |—+| Tap3 |— Tapd |—

Tapl |—| Tap2 |—
Tap |
/\/ J, /\4 Physics of
. ey Training time to > 99% success Computing
" G % c 250000
. 200000
i 150000

Inl

Input ——

2
;g 100000
F 50000 |—— oa ¥ ha sl Devices & Circuits
0
Crowder et al. 2023 (MWCAS 2023) 0 5 10 15 I

Signal Length (Bits) I



31 ‘ NEUROMORPHIC APPLICATIONS

Applications
ANNSs
e SIS
Scientific
Computing

« Random Walks
High-fidelity Physics
Simulations

3 Edge Computing

A « Event sensors

« Spatio-temporal
processing

Algorithm

Complex
Dynamics

Neuromorphic
Computing

Leveraging
Physics

and Noise

Novel Devices
and

Materials

Brain-inspired @ ,,

Algorithms

w
Dragonfly L

: Dendritic Processing

Novel
Architectures
& Circuits

Al-enhanced

Codesign

Probabilistic
Computing
COINFLIPS

2
Heterogeneous

Computing I

Applicati%



» | CHALLENGES FOR NEXT-GENERATION OF

NEUROMORPHIC SYSTEMS

« Algorithms are cognizant of architecture

and device constraints.

« Leverage the complex dynamics of
devices.

« Bio-inspired techniques, adoption in
computing

« Software tools to support
design and development

« Integration with Al-enhanced
techniques?

« Leverage the physics of devicesto d
computation (analog)

« Embrace stochasticity of devices

« Analog devices are noisy. How can we
incorporate this into algorithms?

Leveraging
Physics
and Noise

Novel
Algorithm

Complex
Dynamics

Neuromorphic
Computing

Novel Devices
and

Materials

Heterogeneous architectures
CoDesign to optimize communication and
memory bottlenecks

3D architectures, Photonics

&

« How can Al-enhanced techniques
o accelerate scientific discovery?

e « Different Al techniques at the

el device, circuit, system design and

architecture level.

« Enable encoding of domain
knowledge

« Enable concurrent contribution

from researchers
Al-enhanced

Codesign

Novel devices with complex dynamics I
« Radiation-hardened devices
« Reconfigurable devices

« Computational efficiency and
computational density



‘ THANK YOUR WE ARE HIRING!

%R 2 [m]

Careers
careers.sandia.gov I
Neural Exploration and Research https://neuroscience.sandia.gov/ I

Lab

Suma G. Cardwell sgcardw@sandia.gov I
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35

Neuromorphic SHe
Computing Emerging
Heterogeneous Memory

Architectures

Powerwall (10GMAC/Watt)

CPUS GPUs

Efficiency

Conventional
Digital Systems

FUTURE OF COMPUTING: HETEROGENEOQOUS ARCHITECTURES [GJI

Computational

2N -
A G2 .i

2
Co-Design is critical to build the next-generation heterogeneous systems |
_ Extremely
Emerging Heterogeneous
memory I
Limits of scaling have Heterogeneous Neuromorphic Quantum
s e S e Ealeler Architectures Accelerators Computing |
ge of Computer )
Architecture’ 5-10 years 15-20 years

Truly Heterogeneous Computing’, Cardwell et al., SMC 2020 I



https://link.springer.com/chapter/10.1007/978-3-030-63393-6_23

36 ‘ DENDRITE MODELING
DENDRITES

Resistor-Capacitor Circuit

Raxial
Vmem
MW MWW MWW

Rleakage % _Eleakage % T % T

CMQOS-transistor based

Rall's Cable
Model

Dendrite
Vaxial
v _é_ Raxial _&_ A_
R I 1 I 1 l
Vieak —q |: — —q |: I —| |:
Rleakage Cleakage

Nease et al. 2011




;7 1 COINFLIPS APPLICATION: NUCLEAR PHYSICS SIMULATIONS

For a particular collider physics simulation ‘
[Pierog et al., Phy Rev. 2022], ~ 270K
pseudo- random numbers needed for a |

Probability
0

0.08—

single event, with billions of events
needing to be simulated.

CPU time is ~ 30-50% of the total compute
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time
Direct random number generation |
leveraging stochastic devices can promise
P e e e 0708w significant energy savings for such
Fraction of CPU time in RNG . .
Detector response appllcatlons
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| Random numbers are a limiting computational cost for
@ ! y B some nuclear physics applications I
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