
CAN CO-DESIGN
OF SYSTEMS AND APPLICATIONS
DELIVER SUSTAINABILITY?
Ana-Lucia Varbanescu
CAES @ EEMCS
a.l.varbanescu@utwente.nl

This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement № 101093202.

mailto:a.l.varbanescu@utwente.nl

CAN CO-DESIGN
OF SYSTEMS AND APPLICATIONS
DELIVER SUSTAINABILITY?
Ana-Lucia Varbanescu
CAES @ EEMCS
a.l.varbanescu@utwente.nl

This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement № 101093202.

Most work & results by Merijn Verstraaten,
Duncan Bart, Jeffrey Spaan, Kevin Nobel, Skip Thijssen

mailto:a.l.varbanescu@utwente.nl

ModSim relevant topics I will _not_ cover
• We built a new GPGPU simulator for NVIDIA GPUs
• Rust-based, parallel, (somewhat) more accurate than AccelSim
• Extensible, yet limited to existing systems

• We studied end-to-end sustainability for data-centers
• Model combining models from utilization to utilities
• Focusing on the R’s of sustainability – from Re(f)use to Recycle and Refurbish

• We work on Energy Labels for digital services in the computing continuum
• Assess the energy consumption of different energy systems
• Towards proposing energy labels

• Extended iFogSim to support both multi-app and computing and networking energy modelling

https://github.com/romnn/microgpusim
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgitfront.io%2Fr%2Fgorgonea%2Fwmvfe3LSugWE%2FSustainable-TCO%2F&data=05%7C02%7Ca.l.varbanescu%40utwente.nl%7Ca31c244d9f9c4a040d2008dca48f5c3e%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638566183363787674%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=ssW34h7eOUaOpg5dVy3tsUJV%2BPujwA9VQkyDeIfMqc0%3D&reserved=0
http://essay.utwente.nl/101089/

Computing is everywhere … and it’s not free!
• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or

about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways
• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Computing is everywhere … and it’s not free!
• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or

about 400 North America persons)

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways
• And consumption increased by 80% in 3 years

• The ICT sector is predicted to reach 21% of the global energy consumption by 2030

The energy consumption of computing is substantial and
constantly increasing!

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Three types of stakeholders

System integrators
Offer the right mix of resources
for the application developers
and system operators.
Include efficient hardware to
enable different application
mixes.

System operators
Ensure efficient scheduling
of workloads on system
resources.
Harvest energy where
resources/systems are
massively underutilized.

Developers and users
Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools
Design and implement
applications able to adapt to
the available system resources

Agenda
• Different views on performance

• Zero-waste computing

• Two case-studies

• (re)Defining systems codesign

• Graph processing and GraphMassivizer

• Challenges and opportunities

• Take home message

This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement № 101093202.

Some relevant performance metrics*
• Speed-up: how much faster do we get with new machines, algorithms, …

 S(workload) = Perf(Old)/Perf(New)

• Efficiency: how efficient are we in getting performance

 E(workload) = Perf / Resources

• Energy efficiency: how energy efficient are we in getting performance

 EE(workload) = Perf / Energy

• Utilization: how efficient are we utilizing our resources

 U(resource) = Achieved / Peak

High-efficiency computing

High-performance computing

*please accept the naïve notation and pseudo-definitions

Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing is compute waste.

To reduce compute waste, we must focus on
efficiency-to-solution

Detecting and reducing waste

• We assume computing waste is a consequence of underutilized resources.

• Informally, assume:
system1 > system2
P1 = performance(algorithm, workload, system1)
P2 = performance(algorithm, workload, system2)

• “Strict” definition:
 if (P1 == P2) => waste in P1

• “Relaxed” definition:
 if (abs (P1 - P2) < T) => waste in P1
 with T = threshold for performance loss

11

*performance is not necessarily runtime.

Comic from: https://xkcd.com/1007/

https://xkcd.com/1007

Waste == sustainability ??

Identifying waste leads to opportunities …
• for better more sustainable system selection
• for efficient application collocation
• for DVFS and similar techniques to reduce energy consumption
• for better workload mapping and scheduling
• …

The case of graph processing

Graph processing ...
… is / can be / will be everywhere!1,2

- Social networks
- Bioinformatics
- Pandemic analysis3
- Fraud detection
- Neural networks
- …

1 Sherif Sakr et al. - “The Future Is Big Graphs: A Community View on Graph Processing Systems” – CACM Sept. 2021
2 Tim Hegeman, Alexandru Iosup - “Survey of Graph Analysis Applications” - arXiv:1807.00382
3 https://neo4j.com/graphs4good/covid-19/

Bigger graphs and more complex computing
require more performance.

https://neo4j.com/graphs4good/covid-19/

• Current *PUs
• Massive (data) parallelism
• Optimized for high throughput processing
• Penalties for irregular execution
• Penalties for load imbalance

• Graph processing 4
• Data-driven computations
• Irregular memory accesses
• Poor data locality

• Unstructured problems
• Low computation-to-data access ratio

(mis)match?

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007

Parallel graph processing

• Current *PUs
• Massive (data) parallelism
• Optimized for high throughput processing
• Penalties for irregular execution
• Penalties for load imbalance

• Graph processing 4
• Data-driven computations
• Irregular memory accesses
• Poor data locality

• Unstructured problems
• Low computation-to-data access ratio

(mis)match?

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007

Parallelism <=> New algorithms, data-structures, and
graph processing systems

Parallel graph processing

How do we select the best algorithm for a given
workload? What is the right hardware for a workload?

Some empirical evidence
• NVIDIA TitanX (revised on RTX2080Ti) + CUDA
• Two algorithms: PageRank and BFS
• Results presented on 9 graphs

PageRank: results

https://github.com/merijn/Belewitte

• Different algorithms behave best.
• Different algorithms behave worst.
• The gap in execution time/energy cons. can be up to 2 orders of magnitude.

Choosing the wrong algorithm may lead to significant waste!

https://github.com/merijn/Belewitte

https://github.com/merijn/Belewitte

BFS: results

• Different algorithms behave best.
• Different algorithms behave worst.
• The gap in execution time/energy cons. can be up to 2 orders of magnitude.

Choosing the wrong algorithm may lead to significant waste!

https://github.com/merijn/Belewitte

Reducing waste in computing
Raise awareness
• Monitor (energy) efficiency
• Quantify waste

Improve efficiency
• Improve applications for the systems at hand
• Make applications more efficient
• Make applications share systems

• Improve systems for the applications at hand
• Co-design applications and systems

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and
resource sharing

Application-centric system
design

*Wishful thinking included.

??

Case study #1: Best graph-processing algorithm

Improve
applications for
the systems at

hand

Dr. Merijn Verstraaten,
Skip Thijssen

Choose the best algorithm
• Model the algorithm
• Basic analytical model (work & span)

• Calibrate to platform
• GPU, CPU, …

• Model the dataset
• Size, dimension, topology …

• Predict performance
• Plug the platform and graph parameters into algorithm model

• Rank solutions and pick best.

T = f(P, A, D)

Choose the best algorithm
• Model the algorithm
• Basic analytical model (work & span)

• Calibrate to platform
• GPU, CPU, …

• Model the dataset
• Size, dimension, topology …

• Predict performance
• Plug the platform and graph parameters into algorithm model

• Rank solutions and pick best.

T = f(P, A, D)

Many different attempts of analytical models failed!

Data-driven (ML) models work a bit better – still not
sufficient !

BFS traversal
• Traverses the graph layer by layer
• Starting from a given node

• Sensitive to …
• High diameter
• Graph density
• (dis)connected components
• …

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

BFS traversal
• Traverses the graph layer by layer
• Starting from a given node

• Sensitive to …
• High diameter
• Graph density
• (dis)connected components
• …

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

Best algorithm changes per level!

We cannot predict … but we can construct!

Constructing the best BFS
• Predict ranking
• Determine the best algorithm per level
• Still depends on platform and dataset …

• Construct the best overall algorithm
• Best algorithm per layer => best overall by construction
• Switching between algorithms is a challenge
• When?
• How?

Mix-and-match: build the best algorithm at run-time by switching to the best
implementation at every level*

*this is a generalization of the direction-switching BFS

Does it work?

Mix-and-match uses performance variability to build the best BFS per graph!

• Runtime switching is possible, (currently) with some memory overhead
• We are faster than the state-of-the art, on average, by 3x

Mix-and-match

Wait … what about PageRank?
• Data-centric approach predicts the best performing algorithm with >95%

accuracy

• It is simpler than BFS because it has no different steps and no incremental
coverage of the graph
• No need to construct a mixed algorithm

• So … analytical models?
• Still no luck L

Ask me
more!

Lessons learned
• We can enable some performance prediction using basic ML

• We can provide the fastest BFS algorithm by design

• We can predict the fastest PageRank using BDTs

• Prediction models are difficult to build for data-dependent kernels
• Data-centric approaches do offer a feasible alternative

• Analytical modeling failed because of the wrong granularity and the complexity of the
hardware.

• Performance engineering can quickly become a big-data problem
• We collected GBs of performance data

Lessons learned
• We can enable some performance prediction using basic ML

• We can provide the fastest BFS algorithm by design

• We can predict the fastest PageRank using BDTs

• Prediction models are difficult to build for data-dependent kernels
• Data-centric approaches do offer a feasible alternative

• Analytical modeling failed because of the wrong granularity and the complexity of the
hardware.

• Performance engineering can quickly become a big-data problem
• We collected GBs of performance data

- High-efficiency algorithm
- High occupancy* for the compute cores
- Low utilization of the compute cores
- High utilization of the bandwidth

Wasted compute resources.

Case study #2: Shrinking the platform

Improving systems
for the applications

at hand.

Jeffrey Spaan

1. Pick a workload

2. Pick a baseline platform

3. Reduce resources

4. Measure performance

5. Compare performance
No difference or better performance? Found waste and/or a better system.

The devil is in
the details.

Possible workflow to identify waste

How to reduce resources? How to measure performance? How to compare?

Measuring Predicting performance

• Benchmarking

• Co-location
• Simultaneous execution with a (specific) resource-consuming application

• Partitioning
• Partitions with isolated GPU resources

• Analytical modelling

• Statistical modelling

• Simulation best option (currently)✓

✗ Impossible

✗ Difficult to setup

✗ Not available on many systems

✗ Not sufficiently accurate

Proposed workflow

39

Experimental setup
Applications:

• 5 Rodinia kernels:
• Compute-bound: hotspot, k-means (2)
• Memory-bound: k-means (1)

 backpropagation (1), backpropagation (2)

Systems:

• Baseline: RTX 2060 Super
• Variables:

• SMs: 25, 30, …., 40
• Core clock: 1000, 1150, …., 1900
• Memory clock: 800, 1250, …, 3500

Simulation run-time ≈ 24-40 hours

Simulated with:

Ask me
more!

https://github.com/romnn/gpucachesim

SMs: BFS

BFS is memory bound.

Is the strict definition
reasonable? Should we
use the relaxed
definition?

10 15 20 25 30 35 40
0

10

20

30

40

50

10 15 20 25 30 35 40

2k

4k

6k

8k

10k

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 15 20 25 30 35 40

2B

4B

6B

8B

10B

Breadth first search (1)
Breadth first search (2)

Reducing SMs

Number of SM's Number of SM's

Ex
ec

ut
io

n
tim

e
(m

s)

In
st

ru
ct

io
ns

 p
er

 c
yc

le

En
er

gy
 (J

)

In
st

ru
ct

io
ns

 p
er

 J
ou

le

Waste ?

Waste ?

1000 1500 2000 2500 3000 3500

0

20

40

60

80

100

120

140

1000 1500 2000 2500 3000 3500

4k

5k

6k

7k

8k

9k

10k

11k

1000 1500 2000 2500 3000 3500

0

2

4

6

8

10

12

14

1000 1500 2000 2500 3000 3500
0

2B

4B

6B

8B

10B

Breadth first search (1)
Breadth first search (2)

Reducing memory clock

Memory clock (MHz) Memory clock (MHz)

Ex
ec

ut
io

n
tim

e
(m

s)

In
st

ru
ct

io
ns

 p
er

 c
yc

le

En
er

gy
 (J

)

In
st

ru
ct

io
ns

 p
er

 J
ou

le

Memory clock: BFS

As BFS is memory
bound, we do expect
to see performance
gain when the memory
clock speed increases.

Waste ?

Waste ?

Lessons learned

● We demonstrated waste at resource-level can be significant

● We demonstrated it is possible* (in simulation) to update platforms

● New opportunities for …
○ Partitioning
○ Scheduling
○ Runtime systems

● Key challenge: can we predict waste?
○ Roofline, maybe?
○ Other models?

- Waste can (/should?) be investigated per
resource.

- Difficult to model, trivial (but sloooow) to
simulate.

Reconfiguring the system
can reduce compute waste.

Co-designing systems and applications

Can we co-design?

Duncan Bart,
Kevin Nobel

Main goal of system co-design
Determine the best-possible1 system-configuration2 for a given
workload3.

1. Best–possible
• Speed-up, utilization, energy efficiency, …

2. System-configuration
• Combination of resources: (fractions of) CPUs/ (fractions of) GPUs/heterogeneous …

3. Workload
• Proccessing to do _and_ representative data

Approach: model-based design-space exploration.

Application
specification

Final
version

Algorithm

Performance
modeling

Mix and match

Code
building & tuning

Co-design idea(s)

Open questions
• What is the right abstraction for the input?
• How do we split the workload in “basic units”?
• How do we build “basic units” performance models?
• How do we prune the search space?
• How do we do code building and tuning?
• What about the data?
• …

Graph-Massivizer: end-to-end graph processing

Graph-Optimizer & BGOs
BGOs = Basic Graph Operations that …
• Can be implemented “independently” / ”efficiently”
• Can be modelled for performance and energy
• Can be composed in “workflows”
• Workflow(BGOs) + Dataset => Workload

• Graph-Optimizer …
• uses a workflow model to compose BGOs
• selects Best BGO for a given workload and platform
• provides performance and energy consumption bounds per

“execution plan” (aka, mapping)
• selects ”ideal system config”.

BGOs and Workflows

Co-design for sustainability [1]

• Sustainability = f(lower energy consumption, lower emissions energy)

• Lower energy consumption depends on …
• Efficient hardware configuration
• Efficient device selection
• Efficient mapping (that is, ”where” do we run)

• Lower-emissions energy depends on …
• Efficient location
• Efficient scheduling (that is, “when” do we run)

Co-design for sustainability [2]
coDesign {
 Input: H={HW components}, W=workload{algo, BGOs}, G=graph
 G = read/load graph; // some in-memory representation
 G = f(G{|V|,|E|, D, dD, …}
 G’= graphSample(G,size); // a small enough sample of G
 forall (c in possibleSystemConfig{H}) { // naïve DSE
 forall (mW in possibleMappings(W, c)) // mapping of tasks to HW
 q = perfModel(mW, G, G’) // performance modelling
 if (q acceptable) { // best performance, or some margin
 Systems += {(mW,q)};
 } // add to feasible configs
 }
 }
 Output = Systems // feasible configurations & predictions
}

In summary …

Co-design for sustainability
• From performance to zero-waste to sustainability
• Zero-waste computing is a strong motivating example …
• … but we need tools and methods for it.

• Tempting to co-design applications and systems
• Need models for applications and performance/efficiency/waste
• Need models/simulators for assessing system configurations

• Co-design with GraphMassivizer
• Application models: from kernels to workflows
• Providing performance and energy predictions

• Focusing on *PU-based configurations

Image from: https://www.pinterest.com/pin/245024035948632549/

Relevant links
• Mix-and-Match BFS modeling
• SC IA3 paper: https://ieeexplore.ieee.org/document/8638408
• Full Phd thesis: https://pure.uva.nl/ws/files/86139453/Thesis.pdf
• Github: https://github.com/merijn/Belewitte

• AI-based models for connected components:
• Paper: https://dl.acm.org/doi/10.1145/3528416.3530247

• New work on modelling
• MSc thesis available on demand

• GPGPU Simulator
• MSc thesis available on demand
• Github: https://github.com/romnn/microgpusim

• GraphMassivizer
• Project: https://graph-massivizer.eu/
• Paper on optimizer: https://dl.acm.org/doi/10.1145/3578245.3585340

https://ieeexplore.ieee.org/document/8638408
https://pure.uva.nl/ws/files/86139453/Thesis.pdf
https://github.com/merijn/Belewitte
https://dl.acm.org/doi/10.1145/3528416.3530247
https://github.com/romnn/microgpusim
https://graph-massivizer.eu/
https://dl.acm.org/doi/10.1145/3578245.3585340

