CAN CO-DESIGN /
OF SYSTEMS AND APPLICATIONS ks
DELIVER SUSTAINABILITY? Ny

Haarlem ®

Amsterdam

SR
MASSIVIZER

Ana-Lucia Varbanescu
CAES @ EEMCS
a.l.varbanescu@utwente.nl

N

Zeeland.
e O

L 4

This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement Ne 101093202.

{IVERSITY
TWENTE.

(e)
v



mailto:a.l.varbanescu@utwente.nl

> Qo - ’ g
» Groningen
©

4 ‘(? _

y
|
h
¥ oy
\
3
\
(> N

s
CAN CO-DESIGN p e
OF SYSTEMS AND APPLICATIONS  ftows
DELIVER SUSTAINABILITY? ey

Ana-Lucia Varbanescu
CAES @ EEMCS
a.l.vi

Amsterdam

Most work & results by Merijn Verstraaten,
Duncan Bart, Jeffrey Spaan, Kevin Nobel, Skip Thijssen

{IVERSITY
TWENTE.

This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement Ne 101093202.

VAV
SR
MASSIVIZER

(e)
v



mailto:a.l.varbanescu@utwente.nl

ModSim relevant topics | will not cover

- We built a new GPGPU simulator for NVIDIA GPUs

- Rust-based, parallel, (somewhat) more accurate than AccelSim

- We studied end-to-end sustainability for data-centers
- Model combining models from utilization to utilities
- Focusing on the R’s of sustainability — from Re(f)use to Recycle and Refurbish

- We work on Energy Labels for digital services in the computing continuum
- Assess the energy consumption of different energy systems
- Towards proposing energy labels
- Extended iFogSim to support both multi-app and computing and networking energy modelling


https://github.com/romnn/microgpusim
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgitfront.io%2Fr%2Fgorgonea%2Fwmvfe3LSugWE%2FSustainable-TCO%2F&data=05%7C02%7Ca.l.varbanescu%40utwente.nl%7Ca31c244d9f9c4a040d2008dca48f5c3e%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638566183363787674%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=ssW34h7eOUaOpg5dVy3tsUJV%2BPujwA9VQkyDeIfMqc0%3D&reserved=0
http://essay.utwente.nl/101089/

Computing is everywhere ... and it's not free!

- Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

- A mid-size datacenter alone consumes as much energy as a small town
- And that is not considering purchasing and secondary operational costs (e.g., cooling)

- In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways

- And consumption increased by 80% in 3 years

- The ICT sector is predicted to reach 21% of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of most-viewed YouTube videos#Top_videos



Computing is everywhere ... and it's not free!

- Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year (or
about 400 North America persons)

- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

- A mid-size datacenter alone consumes as much energy as a small town
- And that is not considering purchasing and secondary operational costs (e.g., cooling)

il The energy consumption of computing is substantial and
' constantly increasing!

- The ICT sector Is predicted 10 reac 70 Of the global energy consumption by 2030

*https://en.wikipedia.org/wiki/List_of most-viewed YouTube videos#Top_videos



Three types of stakeholders

Developers and users

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

Design and implement
applications able to adapt to
the available system resources

&

&

System integrators

Offer the right mix of resources
for the application developers
and system operators.

Include efficient hardware to
enable different application
mixes.

System operators

Ensure efficient scheduling
of workloads on system
resources.

Harvest energy where
resources/systems are
massively underutilized.



Agenda

- Different views on performance e

- Zero-waste computing

- Two case-studies

- (re)Defining systems codesign

- Graph processing and GraphMassivizer

- Challenges and opportunities

- Take home message GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”
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This project has received funding from the European Union’s Horizon
Research and Innovation Actions under Grant Agreement Ne 101093202.




Some relevant performance metrics®

- Speed-up: how much faster do we get with new machines, algorithms, ...

S(workload) = Perf(Old)/Perf(New) High-performance computing

- Efficiency: how efficient are we in getting performance

E(workload) = Perf / Resources

- Energy efficiency: how energy efficient are we in getting performance

EE (workload) = Perf / Energy High-efficiency computing

- Utilization: how efficient are we utilizing our resources

U(resource) = Achieved / Peak

*please accept the naive notation and pseudo-definitions



Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing iIs compute waste.

To reduce compute waste, we must focus on
efficiency-to-solution




Detecting and reducing waste

- We assume computing waste is a consequence of underutilized resources.

- Informally, assume'
systeml >

= perfo gorjthm, workl teml
= perforpance alg ithm, work#oad

- “Strict” definition:

- “Relaxed” definition:
if ( abs (Pl - .) < T ) => waste in Pl
with T = threshold for performance loss

*performance is not necessatrily runtime.
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Comic from: https://xkcd.com/1007/

THE WORD “SUSTAINARLE " IS UNSUSTAINABLE.



https://xkcd.com/1007

Waste == sustajrfability 77

|dentifying waste leads to opportunities ...

- for better more sustainable system selection

- for efficient application collocation

- for DVFS and similar techniques to reduce energy consumption
- for better workload mapping and scheduling



The case of graph processing



Graph processing ...

... is / can be / will be everywhere!2

- Social networks

- Bioinformatics

- Pandemic analysis3
- Fraud detection

- Neural networks

Bigger graphs and more complex computing

require more performance.

1 Sherif Sakr et al. - “The Future Is Big Graphs: A Community View on Graph Processing Systems” — CACM Sept. 2021
2 Tim Hegeman, Alexandru losup - “Survey of Graph Analysis Applications” - arXiv:1807.00382
3 https://neodj.com/graphs4good/covid-19/



https://neo4j.com/graphs4good/covid-19/

} XEON-®

Parallel graph processing -

- Current *PUs

Massive (data) parallelism

Optimized for high throughput processing
Penalties for irregular execution
Penalties for load imbalance

- Graph processing 4
Data-driven computations
Irregular memory accesses
- Poor data locality
Unstructured problems

Low computation-to-data access ratio

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” — Parallel Processing Letters 2007
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Parallel graph processing

- Current *PUs

- Massive (data) parallelism

- Optimized for high throughput processing
- Penalties for irregular execution

- Penalties for load imbalance

- Graph pe
- Data-dr

- Irregula - o o=y
- Poor de : e N2 NE o

- Unstru How do we select the best algorithm for a given ‘

e, workload? What is the right hardware for a workload?

Parallelism <=> New algorithms, data-structures, and *
graph processing systems o

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” — Parallel Processing Letters 2007



Some empirical evidence

- NVIDIA TitanX (revised on RTX2080Ti) + CUDA
- Two algorithms: PageRank and BFS
- Results presented on 9 graphs

Id Graph # Vertices # Edges Dataset

1 actor-collaboration 382,219 30,076,200 KONECT
2 amazon0601 403,394 3,387,390 KONECT
3 flixster 2,523,390  15.837.600 KONECT
4 jesterl 73,512 8,272,720 KONECT
5 patentcite 3,774,770 16,518,900 KONECT
6 wikipedia link en 12,151,000 378,142.000 KONECT
7 wiki talk ru 457,017 919.790 KONECT
8 higgs-social network 456,626 14,855,800 SNAP

9 sx-stackoverflow-c2q 1,655,350 11,226,800 SNAP




PageRank: results
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 Different algorithms behave best.
 Different algorithms behave worst.
» The gap in execution time/energy cons. can be up to 2 orders of magnitude.

Choosing the wrong algorithm may lead to significant waste!



https://github.com/merijn/Belewitte
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BFS: results
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 Different algorithms behave worst.
» The gap in execution time/energy cons. can be up to 2 orders of magnitude.

Choosing the wrong algorithm may lead to significant waste!



https://github.com/merijn/Belewitte

Reducing waste in computing

Raise awareness /

- Monitor (energy) efficiency

- Quantify waste -

Improve efficiency

»

- Make applications share systems

- Co-design applications and systems

- Improve applications for the systems-at ha
- Make applications more efficient

- Improve systems for the applications at hand

/

-
<=

Performance analysis

Performance modeling

Performance optimization

Efficient scheduling and

5 resource sharing

(Application-centric system\

design )

N

\.

??

\. J

*Wishful thinking included.



Case study ;

:

Improve
applications for
the systems at

hand

Dr. Merijn Verstraaten
Skip Thijssen

1. Best graph-processing algorithm



Choose the best algorithm

- Model the algorithm
- Basic analytical model (work & span)
- Calibrate to platform _ T=f(P, A, D)
- GPU, CPU, ...
- Model the dataset

- Size, dimension, topology ...

- Predict performance
- Plug the platform and graph parameters into algorithm model

- Rank solutions and pick best.



Choose the best algorithm

- Model the algorithm

- Basic analytical model (work & span)

- Calibrate to platform
- GPU, CPU, ...

- Model the dataset

- Size, dimension, topology ...

— T =1f(P, A, D)

- Predict r Many different attempts of analytical models failed!

Data-driven (ML) models work a bit better — still not
sufficient !



BFS traversal

- Traverses the graph layer by layer
- Starting from a given node
- Sensitive to ...
- High diameter
- Graph density
- (dis)connected components

- Challenges
- No computation
- Load-balancing

- Irregular memory accesses O O




BFS traversal

- Traverses the graph layer by layer
- Starting from a given node

- Sensitive to ...
- High diameter

- Graph density “

‘-;-;-ﬂ

We cannot predict ... but we can construct!




B ——
Constructing the best BFS

- Predict ranking
- Determine the best algorithm per level
- Still depends on platform and dataset ...

- Construct the best overall algorithm
- Best algorithm per layer => best overall by construction

- Switching between algorithms is a challenge
- When?
- How?

Mix-and-match: build the best algorithm at run-time by switching to the best

implementation at every level*

*this is a generalization of the direction-switching BFS



Does it work?

Bz Mix-and-match EEE Optimal I Lonestar 2.0
B Best Non-switching EEE Gunrock
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* Runtime switching is possible, (currently) with some memory overhead
« We are faster than the state-of-the art, on average, by 3x

Mix-and-match uses performance variability to build the best BFS per graph!



B ———
Wait ... what about PageRank?

- Data-centric approach predicts the best performing algorithm with >95%
accuracy

- It is simpler than BFS because it has no different steps and no incremental
coverage of the graph
- No need to construct a mixed algorithm

- S0 ... analytical models?
- Still no luck ®




| essons learned

- We can enable some performance prediction using basic ML
- We can provide the fastest BFS algorithm by design
- We can predict the fastest PageRank using BDTs

- Prediction models are difficult to build for data-dependent kernels
- Data-centric approaches do offer a feasible alternative

- Analytical modeling failed because of the wrong granularity and the complexity of the
hardware.

- Performance engineering can quickly become a big-data problem
- We collected GBs of performance data



| essons learned

- We can enable some performance prediction using basic ML
- We can provide the fastest BFS algorithm by design
- We can predict the fastest PageRank using BDTs

- Prediction models are difficult to build for data-dependent kernels

High-efficiency algorithm

High occupancy™ for the compute cores Wasted compute resources.

Low utilization of the compute cores
High utilization of the bandwidth



Case study ;

:

2. Shrinking the platform

Improving systems
for the applications

at hand.

Jeffrey Spaan
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Possible workflow to identify waste

1. Pick a workload

2. Pick a baseline platform

3. Reduce resources < The devil is in
— the details.

-

No difference or better performance? Found waste and/or a better system.

4. Measure performance

5. Compare performance

How to reduce resources? How to measure performance? How to compare?




e
M@&é\éﬂdg Predicting performance

Benchmarking X Impossible
Co-location X Difficult to setup
Simultaneous execution with a (specific) resource-consuming application

Partitioning X Not available on many systems
Partitions with isolated GPU resources

- Analytical modelling

- _ X Not sufficiently accurate
Statistical modelling

Simulation \/ best option (currently)



-
Proposed workflow

Predictor

Q Application —) Tracer sass—»| Simulator E—Metrics—) Evaluation
: A : A
A R ‘ !

Q Workload —.— ’i’f:xfz% :

Q
a Co nflg urations 10?0 SPTH% 103000 SMMH} 1@2000 SMMHz Waste
64b bus 64bit bus 64bit bus
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Experimental setup

Applications:

5 Rodinia kernels: Simulated with:
«  Compute-bound: hotspot, k-means (2)

Memory-bound: k-means (1)
, backpropagation (2)

Systems:

 Baseline: RTX 2060 Super

 Variables:
« SMs: 25, 30, ....,40
« Core clock: 1000, 1150, ...., 1900
*  Memory clock: 800, 1250, ..., 3500

Simulation run-time = 24-40 hours

https://github.com/romnn/gpucachesim



SMs: BFS

BFS is memory bound.

|s the strict definition
reasonable? Should we
use the relaxed
definition?
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Memory clock: BFS

As BFS is memory
bound, we do expect
to see performance
gain when the memory
clock speed increases.
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Energy (J)

120

100

80

60

40

20

0

14

12

10

()]

Waste ?

P —

N\

*—

@ @ @

1000 1500 2000 2500 3000 3500
1000 1500 2000 2500 3000 3500

Memory clock (MHz)

Instructions per cycle

-

Instructions per Joule

-

11k

10k

9k

8k

7k

6k

5k

4k

10B

8B

6B

4B

2B

—e— Breadth first search (1)
—e— Breadth first search (2)

1000 1500 2000 2500 3000 3500

1000 1500 2000 2500 3000 3500
Memory clock (MHz)



| essons learned

« \We demonstrated waste at resource-level can be significant

o We demonstrated it is possible® (in simulation) to update platforms

o New opportunities for ...
o Partitioning
o Scheduling
o Runtime systems

Waste can (/should?) be investigated per
resource.

Reconfiguring the system
Difficult to model, trivial (but sloooow) to

simulate.

can reduce compute waste.
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Can we co-design?

2

Duncan Bart,
Kevin Nobel

Co-designing systems and applications



Main goal of system co-design

Determine the best-possible! system-configuration? for a given
workload3.

1. Best—possible
- Speed-up, utilization, energy efficiency, ...
2. System-configuration
- Combination of resources: (fractions of) CPUs/ (fractions of) GPUs/heterogeneous ...

3. Workload

- Proccessing to do _and_ representative data

Approach: model-based design-space exploration.




Co-design idea(s)

Mix and match

Application

specification  Algorithm \ /~/ g $
1 uﬂﬂﬂ

modeling
[Q]—> ;7
n j Code .
E \ building & tuning Fma_l
L) version
I_I_ L 'L

OO0



Open questions

- What is the right abstraction for the input?

- How do we split the workload in “basic units”?

- How do we build “basic units” performance models?
- How do we prune the search space?

- How do we do code building and tuning?
- What about the data?




Graph-Massivizer: end-to-end graph processing

Data P:rovider

Provides.gvaph data

£
i
g
g
g

Data Creation, Access,
and Manipulation

Streams

External
API

Qo =

Graph Data

:

Ay
SR
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Ingests data from
data sources

Al Specialist

!
Inspects and runs reasoning

Knowledge Graph Engineer and graph processing algorithms —— Data Scientist
L Inges;ts da:‘; ar':d cr?ales 9raphs, M define graph projections, ---------- ]
explores the knowledge graph : and run graph algorithms
EetphecioRiation Modeiing Knowledge Graph
el
! Graph Massivizer Toolkit :
v v
Graph-Inceptor Graph-Scrutinizer Graph-Optimizer Graph-Greenifier Graph-Choreographer
Basic graph operations Work-driven simulation Resource similarity
BGOs) toolchain identification Ml
Graph Creation (
Graph [P bilisti ¢
Sampling | Reasoning Graph processing Sustainability p Resource partition
. . workflow models creation
Workflow execution m
. prediction 4
Graph Storage < > Graph Anal)_mcs FaaS BGO
and Querying 0 scheduling
Metrics and
selection for || Hardware deployment
P ce| |perforr Benchmark calculation
& models
{Sustainability
Sysem og
A

Graph Management

Graph Database

Infrastructure Communication

Workload

_ _Provides computing___ (mix of BGO functions)

resources

HPC Facility Manager

Compute Infrastructure (HPC/Cloud/Edge/Local)

Hardware

65 @8

Storage




e 0909090 %02 92 92 |
Graph-Optimizer & BGOs T

Basic graph operations

BGOs = Basic Graph Operations that ... . (BGOs)
- Can be implemented “independently” / "efficiently” :
- Can be modelled for performance and energy Graph proceesing
- Can be composed in “workflows” workflow models
- Workflow(BGOs) + Dataset => Workload t
Workflow execution
- Graph-Optimizer ... prediction
- uses a workflow model to compose BGOs Me?ﬁcs I
- selects Best BGO for a given workload and platform selection for | T Hardware
- provides performance and energy consumption bounds per Pe"°’g‘a“°e pemﬁgce‘_
“execution plan” (aka, mapping) ISustainability
- selects "ideal system config”. System mg]
SR, A

MASSIVIZER



BGOs and Workflows

Basic graph Workflow model

SR,

MASSIVIZER

operations
’’’’’ f App.
e i design
| ‘

Config A

Performance
prediction
Infrastructure
l config.
Infrastructure
\
A = most
efficient
B = fastest

Config B




Co-design for sustainability [1]

- Sustainability = f(lower energy consumption, lower emissions energy)

- Lower energy consumption depends on ...
- Efficient hardware configuration
- Efficient device selection
- Efficient mapping (that is, "where” do we run)

- Lower-emissions energy depends on ...
- Efficient location
- Efficient scheduling (that is, “when” do we run)



B ——
Co-design for sustainabillity [2]

coDesign {
Input: H={HW components}, W=workload{algo, BGOs}, G=graph
G = read/load graph; // some in-memory representation
G = f(G{IVI,IEI, D, dD, ..}
G’= graphSample(G size); // a small enough sample of G
forall (c 1in p0551b1eSystemConflg{H}) { // naive DSE
forall (MW in possibleMappings(W, c)) // mapping of tasks to HW
q = perfModel(mW, G, G’) // performance modelling
1f (g acceptable) { // best performance, or some margin
Systems += {(mW,q)};
} // add to feasible configs

¥
¥

Output = Systems // feasible configurations & predictions



In summary ...



Co-design for sustainability

- From performance to zero-waste to sustainability
- Zero-waste computing is a strong motivating example ...
- ... but we need tools and methods for it.

- Tempting to co-design applications and systems
- Need models for applications and performance/efficiency/waste
- Need models/simulators for assessing system configurations

- Co-design with GraphMassivizer

- Application models: from kernels to workflows
- Providing performance and energy predictions

- Focusing on *PU-based configurations

Image from: https://www.pinterest.com/pin/245024035948632549/
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Relevant links

- Mix-and-Match BFS modeling
- SC IA3 paper: https://ieeexplore.ieee.org/document/8638408
- Full Phd thesis: https://pure.uva.nl/ws/files/86139453/Thesis.pdf
- Github: https://github.com/merijn/Belewitte
- Al-based models for connected components:
- Paper: https://dl.acm.org/doi/10.1145/3528416.3530247
- New work on modelling
- MSc thesis available on demand
- GPGPU Simulator
- MSc thesis available on demand
- Github: https://github.com/romnn/microgpusim
- GraphMassivizer
- Project: https://graph-massivizer.eu/
- Paper on optimizer: hitps://dl.acm.org/doi/10.1145/3578245.3585340



https://ieeexplore.ieee.org/document/8638408
https://pure.uva.nl/ws/files/86139453/Thesis.pdf
https://github.com/merijn/Belewitte
https://dl.acm.org/doi/10.1145/3528416.3530247
https://github.com/romnn/microgpusim
https://graph-massivizer.eu/
https://dl.acm.org/doi/10.1145/3578245.3585340

