
RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Ridiculously Simple
Computers
(& simulation thereof)
Bruce Jacob
Cyber Science Department
United States Naval Academy
Disclaimer: The views you are about to hear are the ravings of a madman and do not necessarily represent the views or
opinions of the U. S. Naval Academy, Department of the Navy, or Department of Defense (DoD) or any of its components.

1

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

My Goal = Teaching Platform**
Fundamental understanding
• Distillation of components to essence
• Everything is there to serve a purpose

(education => explain that purpose)
Observations:
 Same-ish goals as HW/SW Co-Design
** Results echo yesterday’s panel session

2

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

RiSC-16 — Student Model

3

ADD

OR

AND

reg A reg B reg C

reg A reg B

reg A reg B reg C

reg C

0000

0010

0011

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SUB reg A reg B reg C0001

0111JALR reg A reg B 0000

1000ADDI reg A reg B 0000 imm16

BEQ 1011 0000reg A imm16reg B

1001

1010

LW

SW reg A

reg A reg B

reg B

0000

0000

imm16

imm16

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HALT 1111 111111101111 imm16

16x16 RF
r15/lr
r14/tr

r13/sp
r12/m2
r11/m1

r0

Link Register
Target Register

general-
purpose
registers

defined to be 0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10/m0

Stack Pointer
(used by OS/macros)
(used by OS/macros)
(used by OS/macros)

9 Instructions
+ HALT

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

RiSC-16 + Compiler + Kernel

4

20 Instructions
+ HALT

ADD

OR

AND

reg A reg B reg C

reg A reg B

reg A reg B reg C

reg C

0000

0010

0011

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BOOL reg A

INV reg A

0111

0111

reg B

reg B

0001

S.LT

S.LTE

0111

0111

S.EQ 0111

0010

SUB reg A reg B reg C0001
1001

1010

LW

SW reg A

reg A reg B

reg B

0000

0000

1000ADDI reg A reg B 0000 imm16

imm16

imm16

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reg B

reg B

reg B

0111JALR reg A reg B 0000

reg A

reg A

reg A 1110

1101

1100

1000SHRI reg A reg B 0001 imm16

BNE 1011 0001reg A imm16reg B

BEQ 1011 0000reg A imm16reg B

— reg A reg B reg C0100

— reg A reg B reg C0101

— reg A reg B reg C0110

— reg A reg B reg C1100

— reg A reg B reg C1101

— reg A reg B reg C1110

imm16

imm16

imm16

HALT 111111111110

RFI 1111111100011111 imm16

1111 imm16

1001LW.PA reg A reg B 0001 imm16

1010SW.PA reg A reg B 0001 imm16

TRAP 0111 11110000 1111

JALI 1011 0010reg A imm160000

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

C Compilers for Dummies
int is the only data type bahahahahaha …

int ip = &data_structure;
*ip = value;

int variable; <- ‘variable’ = its address
int array[5]; <- ‘array’ = its address
int ip = &array; <- what does ip[3] mean?
=> ip[3] refers to (&ip)+3, not (*ip)+3
 int ip = &array;
 ip->[3] = value;
etc …

ridiculously simple but ~1000 lines of code

5

by

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Kernels … w/ Sustainability Hook!!!
• Future of main memory = nonvolatile

(price per bit + stay-alive power)
• … it will therefore be BIG (TBs)
• … it is also likely to be on-die

(monolithic integration)
• … with many, many access points

and 100s of cores using them
(multicore is here to stay)

6

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

High-Bandwidth Non-Volatiles

7

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Memory Latency 101

8

CPU CPU CPU CPU…

MC

DRAM

CPU

10s
of ns

many
100s
of ns

MC

DRAM

…

Limit = core-to-controller ratio
(<1 is good, 1–2 is okay, >2 is bad)**

** adjusted by
the memory
technology’s

access latency

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

KNL vs. HBNV

9 DRAM ReRAM
Mem Controllers 6 1000
L1 Cache size 32KB 32KB
L2 Cache size 1MB 1MB

Main Memory Parameters
Mem Latency DRAMsim3

simulated
DDR4 & HBM

SST Messier
Read: 200ns

Write: 1000ns
request_width
(access
granularity)

64 Bytes
bus-width = 8B
burst-length = 8

8 Bytes
bus-width = 8B
burst-length = 1

Topology Mesh Mesh

ReRAM Arrays
NoC-connected

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

KNL vs. HBNV

10

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

KNL vs. HBNV

10

This resource
scales WAY better
than either of these

Limit = # access points
to main memory

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Use load/store for Everything

11

data data data…

data
[ptrs]

data
[ptrs]

data data…

data data…

metadata

inode

…

direct
pointers

single indirect
pointers

double indirect
pointers

data
[ptrs]

data
[ptrs]

data data…triple indirect
pointer/s

This is a de facto page table
Let’s just call it that

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Use load/store for Everything
Existing non-volatile space:

Proposal: it becomes something like this:

Map both file space and process space

12
Superblock Data

inodes

Raw Disk:

With Filesystem:

—— page table

ASID

Mapped Pages Process Control Blocksk inode Table

Known address

inode

…

page tablemapped pages for both files and processes

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Use load/store for Everything
Existing non-volatile space:

Proposal: it becomes something like this:

Map both file space and process space

12
Superblock Data

inodes

Raw Disk:

With Filesystem:

—— page table

ASID

Mapped Pages Process Control Blocksk inode Table

Known address

inode

…

page tablemapped pages for both files and processes

File Permissions?

Use the existing facility that you

already have: virtual memory,

backed up by the hardware TLB

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Observations: Simplicity
Pseudocode for process invocation:
// input: inode of the file to execute

new_process(inode){
 choose ASID
 initialize a PCB (e.g., PC=0, SP=0xFFFF)
 put ASID onto runQ
 return from interrupt
}

You jump directly into the raw executable

13

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Observations / Conclusions
Verilator + Verilog CPU + kernel + shell
is doable in real time
(most of you guys already knew this)

[demo]

14

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Observations / Conclusions
Simplicity — Kernel in ~1000 lines of C
VM + preemptive multitasking + named files + int-driven I/O

Merged file system + virtual memory system (way less code)

Jumping into binaries is kinda cool :D

—> New Way to Use Modeling/Simulation
Running in first-person as opposed to batch-mode enables
exploratory design, vs. design-space exploration

Study ANY microarchitecture, in ANY amount of detail,
running ANY operating system … in real-time on your laptop

15

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Shameless
Plug

16

The Design and Security
of Modern Computing Systems
How a Computer Is Built, From Ground Up
How It Is Designed To Provide Security
How its Defenses Can Be Overrun

Bruce Jacob
William Casey
Anthony Melaragno

United States Naval Academy
Cyber Science Department

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

Call For Papers www.memsys.io Call For Papers

The International Symposium on Memory Systems Fall 2024, Washington DC

MEMSYS 2024
Important Dates

Abstract Deadline: 2 June, 2024
Submission: 16 June, 2024
Notification: 15 July, 2024
Camera-Ready: 1 September, 2024

Submission Formats

You may submit any length of an
original document — anything from 1–
16 pages is acceptable, for example:
1–2 page Abstracts  
5–6 page Position Papers  
10+ page Research Papers
Conference paper format, ACM 'sigconf'
proceedings template, blind submission
(no authors listed), up to 16 pages long

Organizers

Bruce Jacob (Naval Academy)
Kenneth Wright (AMD)
Chen Ding (U. Rochester)
Hameed Badawy (NMSU)
Bruce Childers (U. of Pittsburgh)
Dietmar Fey (U. Erlangen)
Michael Jantz (University of Tennessee)
Ron Dreslinski (University of Michigan)
Marc Reichenbach (U. Rostock)
Ke Zhang (ICT)
Jonathan Beard (Google)
Zeshan Chishti (Intel)
Bruce Christenson (Intel)
David Donofrio (TTCL)
Thomas Vogelsang (Rambus)
John Leidel (Tactical Computing Labs)
Arun F Rodrigues (Samsung)
Robert Trout (Sadram)
William Wang (ARM)
Petar Radojkovic (BSC)
Norbert Wehn (RPTU)
Matthias Jung (U. Würzburg)
Wendy Elsasser (Rambus)
Maya Gokhale (LLNL)
Si Hammond (NNSA)
Yitzhak Birk (Technion)
Mike Ignatowski (AMD)

Memory-device manufacturing, memory-architecture design, and the use of
memory technologies by application software all profoundly impact today’s and
tomorrow’s computing systems, in terms of their performance, function,
reliability, predictability, power dissipation, and cost. Existing memory
technologies are seen as limiting in terms of power, capacity, and bandwidth.
Emerging memory technologies offer the potential to overcome both technology-
and design-related limitations to answer the requirements of many different
applications. Our goal is to bring together researchers, practitioners, and others
interested in this exciting and rapidly evolving field, to update each other on the
latest state of the art, to exchange ideas, and to discuss future challenges. Please
visit memsys.io for more information.

Areas of Interest
Previously unpublished papers containing significant novel ideas and technical
results are solicited. Papers that focus on system, software, and architecture level
concepts specifically memory-related, i.e. topics outside of traditional conference
scopes, will be preferred over others (e.g., the desired focus is away from pipeline
design, processor cache design, prefetching, data prediction, etc.). Symposium
topics include, but are not limited to, the following:
• Memory-system design from both hardware and software perspectives
• Memory failure modes and mitigation strategies
• Memory and system safety and security issues
• Disaggregated Memory (e.g. CXL)
• Memory for embedded and autonomous systems (e.g., automotive)
• Operating system design for hybrid/nonvolatile memories
• Technologies including, DRAM, FLASH, NVM etc.
• Memory-centric programming models, languages, optimization
• Compute-in-memory and compute-near-memory technologies
• Data-movement issues and mitigation techniques
• Algorithmic & software memory-management techniques
• Emerging memory technologies, their controllers, and novel uses
• Interference at the memory level across datacenter applications
• In-memory databases and NoSQL stores
• Post-CMOS scaling efforts and memory technologies to support them,

including cryogenic, neural, and heterogeneous memories
• Negative results, validation of results, invalidation of results
To reiterate, papers that focus on topics outside the scope of traditional
architecture conferences will be preferred over others.

Submissions and Presentations
Our primary goal is to showcase interesting ideas that will spark conversation
between disparate groups—to get applications people, operating systems people,
system architecture people, interconnect people and circuits people to talk to
each other. We accept extended abstracts, position papers, and/or full research
papers, and each accepted submission is given a 20-minute presentation time slot.
We intend to publish all papers in the ACM Digital Library.

Venue
The conference will be in Washington DC area.

17 www.memsys.io

Another
Shameless
Plug

Washington DC
Sep/Oct, 2024

MEMSYS 2023 Attendees

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE Thank You!
Questions?
Bruce Jacob

bjacob@usna.edu

18

RIDICULOUSLY
SIMPLE

COMPUTERS

Bruce Jacob

United States
Naval Academy

SLIDE

But Wait, How Does argv Work?
Pseudocode for process invocation:
// input: inode of the file to execute

new_process(inode, phys_arg_page){
 choose ASID
 initialize a PCB (e.g., PC=0, SP=0xFFFF)
 put ASID onto runQ
 map(VIRTUAL_ARG_PAGE, phys_arg_page);
 return from interrupt
}

The shell reads input line into ARG_PAGE,
calls detach(ARG_PAGE) & then new_proc()

19

